Monday, June 25, 2007

The Ilulissat Statement

[This is a statement drafted by the participants of the conference in Greenland that I attended two weeks ago. Its release today coincides with the start of the third conference on synthetic biology in Zürich.]

Synthesizing the Future

A vision for the convergence of synthetic biology and nanotechnology

This document expresses the views that emerged from the Kavli Futures Symposium ‘The merging of bio and nano: towards cyborg cells’, 11-15 June 2007, Ilulissat, Greenland.

Approximately fifty years ago, two revolutions began. The invention of the transistor and the integrated circuit paved the way for the modern information society. At the same time, Watson and Crick unlocked the structure of the double helix of DNA, exposing the language of life with stunning clarity. The electronics revolution has changed the way we live and work, while the genetic revolution has transformed the way we think about life and medical science.

But a third innovation contemporaneous with these was the discovery by Miller and Urey that amino acids may be synthesized in conditions thought to exist on the early Earth. This gave us tantalizing hints that we could create life from scratch. That prospect on the one hand, and the ability to manipulate genetic information using the tools of biotechnology on the other, are now combined in the emerging discipline of synthetic biology. How we shape and implement this revolution will have profound effects for humanity in the next fifty years.

It was also almost fifty years ago that the proposal was made by Feynman of engineering matter at the atomic scale – the first intimation of the now burgeoning field of nanotechnology. Since the nanoscale is also the natural scale on which living cells organize matter, we are now seeing a convergence in which molecular biology offers inspiration and components to nanotechnology, while nanotechnology has provided new tools and techniques for probing the fundamental processes of cell biology. Synthetic biology looks sure to profit from this trend.

It is useful to divide synthetic biology, like computer technology, into two parts: hardware and software. The hardware – the molecular machinery of synthetic biology – is rapidly progressing. The ability to sequence and manufacture DNA is growing exponentially, with costs dropping by a factor of two every two years. The construction of arbitrary genetic sequences comparable to the genome size of simple organisms is now possible. Turning these artificial genomes into functioning single-cell factories is probably only a matter of time. On the hardware side of synthetic biology, the train is leaving the station. All we need to do is stoke the engine (by supporting foundational research in synthetic biology technology) and tell the train where to go.

Less clear are the design rules for this remarkable new technology—the software. We have decoded the letters in which life’s instructions are written, and we now understand many of the words – the genes. But we have come to realize that the language is highly complex and context-dependent: meaning comes not from linear strings of words but from networks of interconnections, with its own entwined grammar. For this reason, the ability to write new stories is currently beyond our ability – although we are starting to master simple couplets. Understanding the relative merits of rational design and evolutionary trial-and-error in this endeavor is a major challenge that will take years if not decades. This task will have fundamental significance, helping us to better understand the web of life as expressed in both the genetic code and the complex ecology of living organisms. It will also have practical significance, allowing us to construct synthetic cells that achieve their applied goals (see below) while creating as few problems as possible for the world around them.

These are not merely academic issues. The early twenty first century is a time of tremendous promise and tremendous peril. We face daunting problems of climate change, energy, health, and water resources. Synthetic biology offer solutions to these issues: microorganisms that convert plant matter to fuels or that synthesize new drugs or target and destroy rogue cells in the body. As with any powerful technology, the promise comes with risk. We need to develop protective measures against accidents and abuses of synthetic biology. A system of best practices must be established to foster positive uses of the technology and suppress negative ones. The risks are real, but the potential benefits are truly extraordinary.

Because of the pressing needs and the unique opportunity that now exists from technology convergence, we strongly encourage research on two broad fronts:

Foundational Research
1. Support the development of hardware platforms for synthetic biology.
2. Support fundamental research exploring the software of life, including its interaction with the environment.
3. Support nanotechnology research to assist in the manufacture of synthetic life and its interfacing with the external world.

Societal Impacts and Applications
4. Support programs directed to address the most pressing applications, including energy and health care.
5. Support the establishment of a professional organization that will engage with the broader society to maximize the benefits, minimize the risks, and oversee the ethics of synthetic life.
6. Develop a flexible and sensible approach to ownership, sharing of knowledge, and regulation, that takes into account the needs of all stakeholders.

Fifty years from now, synthetic biology will be as pervasive and transformative as is electronics today. And as with that technology, the applications and impacts are impossible to predict in the field’s nascent stages. Nevertheless, the decisions we make now will have enormous impact on the shape of this future.

The people listed below, participants at the Kavli Futures Symposium ‘The merging of bio and nano: towards cyborg cells’, 11-15 June 2007, Ilulissat, Greenland, agree with the above statement

Robert Austin
Princeton University, Princeton, USA

Philip Ball
Nature, London, United Kingdom

Angela Belcher
Massachusetts Institute of Technology, Cambridge, USA

David Bensimon
Ecole Normale Superieure, Paris, France

Steven Chu
Lawrence Berkeley National Laboratory, Berkeley, USA

Cees Dekker
Delft University of Technology, Delft, The Netherlands

Freeman Dyson
Institute for Advanced Study, Princeton, USA

Drew Endy
Massachusetts Institute of Technology, Cambridge, USA

Scott Fraser
California Institute of Technology, Pasadena, USA

John Glass
J. Craig Venter Institute, Rockville, USA

Robert Hazen
Carnegie Institution of Washington, Washington, USA

Joe Howard
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

Jay Keasling
University of California at Berkeley, Berkeley, USA

Hiroaki Kitano
The Systems Biology Institute, and Sony Computer Science Laboratories, Japan

Paul McEuen
Cornell University, Ithaca, USA

Petra Schwille
TU Dresden, Dresden, Germany

Ehud Shapiro
Weizman Institute of Science, Rehovot, Israel

Julie Theriot
Stanford University, Stanford, USA


Anonymous said...

歐美a免費線上看,熊貓貼圖區,ec成人,聊天室080,aaa片免費看短片,dodo豆豆聊天室,一對一電話視訊聊天,自拍圖片集,走光露點,123456免費電影,本土自拍,美女裸體寫真,影片轉檔程式,成人視訊聊天,貼圖俱樂部,辣妹自拍影片,自拍電影免費下載,電話辣妹視訊,情色自拍貼圖,卡通做愛影片下載,日本辣妹自拍全裸,美女裸體模特兒,showlive影音聊天網,日本美女寫真,色情網,台灣自拍貼圖,情色貼圖貼片,百分百成人圖片 ,情色網站,a片網站,ukiss聊天室,卡通成人網,3級女星寫真,080 苗栗人聊天室,成人情色小說,免費成人片觀賞,

傑克論壇,維納斯成人用品,免費漫畫,內衣廣告美女,免費成人影城,a漫,國中女孩寫真自拍照片,ut男同志聊天室,女優,網友自拍,aa片免費看影片,玩美女人短片試看片,草莓論壇,kiss911貼圖片區,免費電影,免費成人,歐美 性感 美女 桌布,視訊交友高雄網,工藤靜香寫真集,金瓶梅免費影片,成人圖片 ,女明星裸體寫真,台灣處女貼圖貼片區,成人小遊戲,布蘭妮貼圖片區,美女視訊聊天,免費情色卡通短片,免費av18禁影片,小高聊天室,小老鼠論壇,免費a長片線上看,真愛love777聊天室,聊天ukiss,情色自拍貼圖,寵物女孩自拍網,免費a片下載,日本情色寫真,美女內衣秀,色情網,

Anonymous said...


女優王國,免費無碼a片,0800a片區,免費線上遊戲,無名正妹牆,成人圖片,寫真美女,av1688影音娛樂網,dodo豆豆聊天室,網拍模特兒,成人文學,免費試看a片,a片免費看,成人情色小說,美腿絲襪,影片下載,美女a片,人體寫真模特兒,熊貓成人貼,kiss情色,美女遊戲區,104 貼圖區,線上看,aaa片免費看影片,天堂情色,躺伯虎聊天室,洪爺情色網,kiss情色網,貼影區,雄貓貼圖,080苗栗人聊天室,都都成人站,尋夢園聊天室,a片線上觀看,無碼影片,情慾自拍,免費成人片,影音城論壇,情色成人,最新免費線上遊戲,a383影音城,美腿,色情寫真,xxx383成人視訊,視訊交友90739,av女優影片,