Tuesday, November 14, 2006

Was life inevitable?

Here’s the unexpurgated version of my latest story for news@nature. There’s a lot of really interesting back story here, which I hope to return to at some point. This is far and away some of the most interesting “origin of life” work I’ve seen for some time.

Life may be the ultimate in planetary stress relief, a new theory claims

The appearance of life on Earth seems to face so many obstacles that scientists often feel forced to regard it almost as miraculous. Now two scientists working at the Santa Fe Institute in New Mexico suggest that, on the contrary, it may have been inevitable.

They argue that life was the necessary consequence of the build-up of available energy on the early Earth, thanks to purely geological processes. They regard it as directly analogous to the way lightning relieves the build-up of electrical charge in thunderclouds.

In other words, say Harold Morowitz and Eric Smith in a preprint posted on the Santa Fe Institute archive [1], the geological environment "forced life into existence".

This view, the researchers say, implies not only that life had to emerge on the Earth, but that the same would happen on any similar planet. And they hope that ultimately it will be possible to predict the first steps in the origin of life based on the laws of physics and chemistry alone.

Their proposal is "instructive and inspiring", says Michael Russell, a specialist in the origin of life at the California Institute of Technology in Pasadena.

Morowitz and Smith admit that they don't yet have the theoretical tools to clinch their arguments, or to show what form this "inevitable life" must take. But they argue that it is likely to have used the same chemical processes that now drive our own metabolism – but in reverse.

They say that the young Earth would have been accumulating energy from geological processes much as a dam accumulates gravitational potential energy by piling up water. Sooner or later, something had to give.

One source of such energy would have been energy-rich compounds called polyphosphates, generated in volcanic processes. These are 'battery molecules', analogous to the compound ATP, the ubiquitous source of metabolic energy in living cells.

Another source would have been hydrogen molecules, which are likely to have been abundant in the early atmosphere even though they are almost absent today. Hydrogen would have been generated, for example, by reactions between seawater and dissolved iron.

Energy-releasing reactions between hydrogen and carbon dioxide (a volcanic gas) in the atmosphere can produce complex organic molecules, the precursors of living systems.

In our own metabolism, a series of biochemical reactions called the citric-acid cycle breaks down organic compounds from food into carbon dioxide. Horowitz and Smith say that the energy reservoirs of the young Earth could have driven a citric-acid cycle in reverse, spawning the building blocks of life while relaxing the 'energy pressure' of the environment. Eventually these processes will have become encapsulated in cells, which makes the 'energy-conducting' flows more efficient.

Life, agrees Russell is "a chemical system that drains and dissipates chemical energy." He has used similar ideas to argue that "life would emerge using the same pathways on any sunny, wet rocky planet" [2,3]. But he believes that the most likely place for it to occur was at miniature subsea volcanoes called hydrothermal vents, where the ingredients and conditions are just right for energy-harnessing chemical machinery to develop [4].

The biochemical processes of living organisms are highly organized. Scientists have long puzzled over how these 'ordered' systems can come spontaneously into being, when the Second Law of Thermodynamics suggests that the universe as a whole tends to generate increasing disorder.

The answer, broadly speaking, is that local clumps of order come at the expense of increasing the disorder in their environment. But Horowitz and Smith suggest a rationale for why such concentrations of order should happen in the first place. They draw on the idea, proposed in the 1980s by Rod Swenson of the University of Connecticut, that ordered states are much better 'lightning' conductors' for discharging excess energy.

Thus, they say, despite several major extinctions throughout geological time, when most of life on Earth was obliterated, life itself was never in danger of disappearing – because an Earth with life is always more stable than one without. They call this 'condensation' of life from the energy-rich environment a "collapse to life", which in their view is as inevitable as the appearance of snowflakes in cold, moist air.

1. Morowitz, H. & Smith, E. Santa Fe Institute Working Paper (2006).
2. Russell, M. J. & Hall, A. J. in Hiscox, J. A. (ed.) The Search for Life on Mars, 26-36 (British Interplanetary Society, 1999).
3. Russell, M. J. et al. in Ikan, R. (ed.) Natural and Laboratory-Simulated Thermal Geochemical Processes, 325-388 (Kluwer, Dordrecht, 2003).
4. Martin, W. & Russell, M. J. Phil. Trans. Roy. Soc. B online publication doi:10.1098/rstb.2006.1881 (2006).


Anonymous said...

歐美a免費線上看,熊貓貼圖區,ec成人,聊天室080,aaa片免費看短片,dodo豆豆聊天室,一對一電話視訊聊天,自拍圖片集,走光露點,123456免費電影,本土自拍,美女裸體寫真,影片轉檔程式,成人視訊聊天,貼圖俱樂部,辣妹自拍影片,自拍電影免費下載,電話辣妹視訊,情色自拍貼圖,卡通做愛影片下載,日本辣妹自拍全裸,美女裸體模特兒,showlive影音聊天網,日本美女寫真,色情網,台灣自拍貼圖,情色貼圖貼片,百分百成人圖片 ,情色網站,a片網站,ukiss聊天室,卡通成人網,3級女星寫真,080 苗栗人聊天室,成人情色小說,免費成人片觀賞,

傑克論壇,維納斯成人用品,免費漫畫,內衣廣告美女,免費成人影城,a漫,國中女孩寫真自拍照片,ut男同志聊天室,女優,網友自拍,aa片免費看影片,玩美女人短片試看片,草莓論壇,kiss911貼圖片區,免費電影,免費成人,歐美 性感 美女 桌布,視訊交友高雄網,工藤靜香寫真集,金瓶梅免費影片,成人圖片 ,女明星裸體寫真,台灣處女貼圖貼片區,成人小遊戲,布蘭妮貼圖片區,美女視訊聊天,免費情色卡通短片,免費av18禁影片,小高聊天室,小老鼠論壇,免費a長片線上看,真愛love777聊天室,聊天ukiss,情色自拍貼圖,寵物女孩自拍網,免費a片下載,日本情色寫真,美女內衣秀,色情網,

Anonymous said...


女優王國,免費無碼a片,0800a片區,免費線上遊戲,無名正妹牆,成人圖片,寫真美女,av1688影音娛樂網,dodo豆豆聊天室,網拍模特兒,成人文學,免費試看a片,a片免費看,成人情色小說,美腿絲襪,影片下載,美女a片,人體寫真模特兒,熊貓成人貼,kiss情色,美女遊戲區,104 貼圖區,線上看,aaa片免費看影片,天堂情色,躺伯虎聊天室,洪爺情色網,kiss情色網,貼影區,雄貓貼圖,080苗栗人聊天室,都都成人站,尋夢園聊天室,a片線上觀看,無碼影片,情慾自拍,免費成人片,影音城論壇,情色成人,最新免費線上遊戲,a383影音城,美腿,色情寫真,xxx383成人視訊,視訊交友90739,av女優影片,