Thursday, April 27, 2006

It’s flat, it’s hot, and it’s very weird

Graphene, that is. I have been talking to some fellows about this new wonder-stuff, which wowed the crowds at the American Physical Society meeting in March. Mainly to Andre Geim at Manchester, who is one of those wry chaps you feel you can inherently trust not to load you down with hype. I’m working on a feature on this for New Scientist, which will delve into the decidedly wacky physics of these single-atom-thick sheets of pure carbon. It’s not your ordinary two-dimensional semimetal (yes I know, name me another), mainly because the electrons behave as though they are travelling at close to the speed of light. So here’s an everyday material in which one can investigate Dirac’s relativistic quantum mechanics, which normally applies only in the kind of astrophysical environment you wouldn’t want to end up in by mistake. Anyway, that’s to come. By way of an hors d’oeuvre, here’s a short piece on the materials aspects of graphene which will appear in the June issue of Nature Materials :

Carbon goes flat out

Graphene has revealed itself from a direction that, in retrospect, seems opposite to what one might have expected. First came the zero-dimensional form: C60 and the other fullerenes, nanoscopically finite in every direction. Then there was the carbon nanotube, whose one-dimensional, tubular form set everyone thinking in terms of fibres and wires. It was just two years ago that the two-dimensional form, graphene itself, appeared: flat sheets of carbon one atom thick (Novoselov et al., Science 306, 666; 2004), which, when stacked in the third dimension, return us to familiar, lustrous graphite.

Now it’s tempting to wonder if the earlier focus on reduced dimensionality and curvature may have been misplaced. C60 is a fascinating molecule, but useful materials tend to be extended in at least one dimension. Carbon nanotubes can be matted into ‘bucky paper’, but without exceptional strength. Long, thin single-molecule transistors are all very well, but today’s microelectronics is inherently two-dimensional. Graphene is the master substance of all these structures, and perhaps, so far as materials and electronics are concerned, sheets were what we needed all along.

You can cut up these sheets into device-styled patterns – but that’s best done with chemistry (etching with an oxygen plasma, say), since attempts to tear single-layer graphene with a diamond tip just make it blunt. (As carbon nanotubes have shown, graphite’s reputation for weakness gives a false impression.) And graphene is a semimetal with a tunable charge-carrier density that makes it suitable for the conducting channel of transistors.

But its conductivity is more extraordinary than that. For one thing, the electron transport is ballistic, free from scattering. That recommends graphene for ultrahigh-frequency electronics, since scattering processes limit the switching speeds. More remarkably, the mobile electrons behave as Dirac fermions (Novoselov et al., Nature 438, 197; 2005), which mimic the characteristics of electrons travelling close to the speed of light.

From the perspective of applications, however, one key question is how to make the stuff. Peeling away flakes of graphite with Scotch tape, or in fact just rubbing a piece of graphite on a surface (popularly known as drawing) will produce single-layer films – but neither reliably nor abundantly. Walt de Heer of the Georgia Institute of Technology and coworkers have recently flagged up the value of a method several years old, by which silicon carbide heated in a vacuum will decompose to form graphitic films one layer at a time (Berger et al., Science Express, doi:10.1126/science.1125925).

But maybe wet chemistry will be better still. Graphite was exfoliated (separated into layers) nearly 150 years ago by oxidation, producing platelets of water-soluble oxidized graphene, which may include single sheets. But reducing them triggers aggregation via hydrophobic interactions. This can be prevented by the use of amphiphilic polymers (Stankovich et al., J. Mat. Chem. 16, 155; 2006). Anchoring bare, single graphene sheets to a surface remains a challenge – but one that may benefit, in this approach, from the wealth of experience of organic chemists.


Anonymous said...

歐美a免費線上看,熊貓貼圖區,ec成人,聊天室080,aaa片免費看短片,dodo豆豆聊天室,一對一電話視訊聊天,自拍圖片集,走光露點,123456免費電影,本土自拍,美女裸體寫真,影片轉檔程式,成人視訊聊天,貼圖俱樂部,辣妹自拍影片,自拍電影免費下載,電話辣妹視訊,情色自拍貼圖,卡通做愛影片下載,日本辣妹自拍全裸,美女裸體模特兒,showlive影音聊天網,日本美女寫真,色情網,台灣自拍貼圖,情色貼圖貼片,百分百成人圖片 ,情色網站,a片網站,ukiss聊天室,卡通成人網,3級女星寫真,080 苗栗人聊天室,成人情色小說,免費成人片觀賞,

傑克論壇,維納斯成人用品,免費漫畫,內衣廣告美女,免費成人影城,a漫,國中女孩寫真自拍照片,ut男同志聊天室,女優,網友自拍,aa片免費看影片,玩美女人短片試看片,草莓論壇,kiss911貼圖片區,免費電影,免費成人,歐美 性感 美女 桌布,視訊交友高雄網,工藤靜香寫真集,金瓶梅免費影片,成人圖片 ,女明星裸體寫真,台灣處女貼圖貼片區,成人小遊戲,布蘭妮貼圖片區,美女視訊聊天,免費情色卡通短片,免費av18禁影片,小高聊天室,小老鼠論壇,免費a長片線上看,真愛love777聊天室,聊天ukiss,情色自拍貼圖,寵物女孩自拍網,免費a片下載,日本情色寫真,美女內衣秀,色情網,

Anonymous said...


女優王國,免費無碼a片,0800a片區,免費線上遊戲,無名正妹牆,成人圖片,寫真美女,av1688影音娛樂網,dodo豆豆聊天室,網拍模特兒,成人文學,免費試看a片,a片免費看,成人情色小說,美腿絲襪,影片下載,美女a片,人體寫真模特兒,熊貓成人貼,kiss情色,美女遊戲區,104 貼圖區,線上看,aaa片免費看影片,天堂情色,躺伯虎聊天室,洪爺情色網,kiss情色網,貼影區,雄貓貼圖,080苗栗人聊天室,都都成人站,尋夢園聊天室,a片線上觀看,無碼影片,情慾自拍,免費成人片,影音城論壇,情色成人,最新免費線上遊戲,a383影音城,美腿,色情寫真,xxx383成人視訊,視訊交友90739,av女優影片,