Friday, July 04, 2008

Behind the mask of the LHC

[Here is my latest Muse for Nature News, which, bless them, they ran at its extravagant length and complexity.]

The physics that the Large Hadron Collider will explore has tentative philosophical foundations. But that’s a good thing.


Physicists, and indeed all scientists, should rejoice that the advent of the Large Hadron Collider (LHC) has become a significant cultural event. Dubbed the ‘Big Bang machine’, the new particle accelerator at CERN — the European centre for particle physics near Geneva — should answer some of the most profound questions in fundamental physics and may open up a new chapter in our exploration of why the world is the way it is. The breathless media coverage of the impending switch-on is a reassuring sign of the public thirst for enlightenment on matters that could easily seem recondite and remote.

But there are pitfalls with this kind of jamboree. The most obvious is the temptation for hype and false promises about what the LHC will achieve, as though all the secrets of creation are about to come tumbling out of its tunnels. And it is an uneasy spectacle to see media commentators duty-bound to wax lyrical about matters they understandably don’t really grasp. Most scientists are now reasonably alert to the dangers of overselling, even if they sometimes struggle to keep them in view.

It’s also worth reminding spectators that the LHC is no model of ‘normal’ science. The scale and cost of the enterprise are much vaster than those enjoyed by most researchers, and this very fact restricts the freedom of the scientists involved to let their imaginations and intuitions roam. The key experiments are necessarily preordained and decided by committee and consensus, a world away from a small lab following its nose. This is not intrinsically a bad thing, but it is different.

There is, however, a deeper reason to think carefully about what the prospect of the LHC offers. Triumphalism can mask the fact that there are some unresolved questions about the scientific and philosophical underpinnings of the enterprise, which will not necessarily be answered by statistical analyses of the debris of particle collisions. These issues are revealingly explored in a preprint by Alexei Grinbaum, a researcher at the French Atomic Energy Commission (CEA) in Gif-sur-Yvette [1].

Under the carpet

Let’s be clear that high-energy physics is by no means alone in preferring to sweep some foundational loose ends under the carpet so that it can get on with its day-to-day business. The same is true, for example, of condensed-matter physics (which, contrary to media impressions, is what most physicists do) and quantum theory. It is a time-honoured principle of science that a theory can be useful and valid even if its foundations have no rigorous justification.

But the best reason to tease apart the weak joints in the basement of fundamental physics is not in order to expose it as a precarious edifice — which it is not — but because these issues are so interesting in themselves.

Paramount among them, says Grinbaum, is the matter of symmetry. That’s a ubiquitous word in the lexicon of high-energy physics, but it is far from easy for a lay person to see what is meant by it. At root, the word retains its everyday meaning. But what this corresponds to becomes harder to discern when, for example, symmetry is proposed to unite classes of quantum particles or fields.

Controlling the masses

It is symmetry that anchors the notion of the Higgs particle, probably the one target of the LHC that anyone with any interest in the subject will have heard of. It is easy enough to explain that ‘the Higgs particle gives other particles their mass’ (an apocryphal quote has Lenin comparing it to the Communist Party: it controls the masses). And yes, we can offer catchy analogies about celebrities accreting hordes of hangers-on as they pass through a party. But what does this actually mean? Ultimately, the Higgs mechanism is motivated by a need to explain why a symmetry that seemed once to render equivalent two fundamental forces — the electromagnetic and weak nuclear forces — has been broken, so that the two forces now have different strengths and ranges.

This — the ‘symmetry breaking’ of a previously unified ‘electroweak’ force — is what the LHC will primarily probe. The Higgs explanation for this phenomenon fits nicely into the Standard Model of particle physics — the summation of all we currently know about this branch of reality. It is the only component of the Standard Model that remains to be verified (or not).

So far, this is pretty much the story that, if pressed beyond sound bites, the LHC’s spokespeople will tell. But here’s the thing: we don’t truly know what role symmetry does and should play in physical theory.

Practically speaking, symmetry has become the cornerstone of physics. But this now tends to pass as an unexamined truth. The German mathematician Hermann Weyl, who introduced the notion of gauge symmetry (in essence, a description of how symmetry acts on local points in space) in the 1920s, claimed that “all a priori statements in physics have their origin in symmetry”. For him and his contemporaries, laws of physics have to possess certain symmetry properties — Einstein surely had something of this sort in mind when he said that “the only physical theories that we are willing to accept are the beautiful ones”. For physicist Steven Weinberg, symmetry properties “dictate the very existence” of all physical forces — if they didn’t obey symmetry principles, the Universe would find a way to forbid them.

Breaking the pattern


But is the Universe indeed some gloriously symmetrical thing, like a cosmic diamond? Evidently not. It’s a mess, not just at the level of my desk or the arbitrary patchwork of galaxy clusters, but also at the level of fundamental physics, with its proliferation of particles and forces. That’s where symmetry-breaking comes in: when a cosmic symmetry breaks, things that previously looked identical become distinct. We get, among other things, two different forces from one electroweak force.

And the Higgs particle is generally believed to hold the key to how that happened. This ‘particle’ is just a convenient, potentially detectable signature of the broader hypothesis for explaining the symmetry breaking — the ‘Higgs mechanism’. If the mechanism works, there is a particle associated with it.

But the problem with the Higgs mechanism is that it does not and cannot specify how the symmetry is broken. As a result, it does not uniquely determine the mass of the Higgs particle. Several versions of the theory offer different estimates, which vary by a factor of around 100. That’s a crucial difference in terms of how readily the LHC might observe it, if at all. Now, accounts of this search may present this situation blandly as simply a test of competing theories; but the fact is that the situation arises because of ambiguities about what symmetry-breaking actually is.

The issue goes still deeper, however. Isn’t it curious that we should seek for an explanation of dissimilar entities in terms of a theory in which they are the same? Suppose you find that the world contains some red balls and some blue ones. Is it more natural to decide that there is a theory that explains red balls, and a different one that explains blue balls, or to assume that red and blue balls were once indistinguishable? As it happens, we already have very compelling reasons to believe that the electromagnetic and weak forces were once unified; but deciding to make unification a general aim of physical theories is quite another matter.

Physics Nobel laureate David Gross has pointed out the apparent paradox in that latter approach: “The search for new symmetries of nature is based on the possibility of finding mechanisms, such as spontaneous symmetry breaking, that hide the new symmetry” [2]. Grinbaum is arguing that it’s worth pausing to think about that assumption. To rely on symmetry arguments is to accept that the resulting theory will not predict the particular outcome you observe, where the symmetry may be broken in an arbitrary way. Only experiments can tell you what the result of the symmetry-breaking is.

Should we trust in beauty?

Einstein’s statement is revealing because it exposes a strand of platonic thinking in modern physics: beauty matters, and it is a vision of beauty based on order and symmetry. Pragmatically speaking, arguments that use symmetry have proved to be fantastically fertile in fundamental physics. But as Weyl’s remark shows, they are motivated only by assumptions about how things ought to be.

A sense of aesthetic beauty is now not just something that physicists discover in the world; it is, in the words of Gian Francesco Giudice, a theoretical physicist at CERN, “a powerful guiding principle for physicists as they try to construct new theories” [3]. They look for ways to build it in. This, as Grinbaum points out, “is logically unsound and heuristically doubtful”.

Grinbaum says that such aesthetic judgements give rise to ideas about the ‘naturalness’ of theories. This notion of naturalness figures in many areas of science, Giudice points out, but is generally dangerously subjective: it is ‘natural’ to us that the solar system is heliocentric, but it wasn’t at all to the ancient Greeks, or indeed to Tycho Brahe, the sixteenth-century Danish astrologer.

But Giudice explains that “a more precise form of naturalness criterion has been developed in particle physics and it is playing a fundamental role in the formulation of theoretical predictions for new phenomena to be observed at the LHC”. The details of this concept of naturalness are technical, but in essence it purports to explain why symmetry-breaking of the electroweak interaction left gravity so much weaker than the weak force (its name notwithstanding). The reasoning here leads to the prediction that production of the Higgs particle will be accompanied by a welter of other new particles not included in the Standard Model. The curious thing about this prediction is that it is motivated not to make any theory work out, but simply to remove the apparent ‘unnaturalness’ of the imbalance in the strengths of the two forces. It is basically a philosophical matter of what ‘seems right’.

Workable theories


There are also fundamental questions about why physics has managed to construct all manner of workable theories — of electromagnetism, say — without having to postulate the Higgs particle at all. The simple answer is that, so long as we are talking about energies well below the furious levels at which the Higgs particle becomes apparent, and which the LHC hopes to create, it is enough to subsume the whole Higgs mechanism within the concept of mass. This involves creating what physicists call an effective field theory, in which phenomena that become explicit above a certain energy threshold remain merely implicit in the parameters of the theory. Much the same principle permits us to use Newtonian mechanics when objects’ velocities are much less than the speed of light.

Effective field theories thus work only up to some limiting energy. But Grinbaum points out that this is no longer just a practical simplification but a methodology: “Today physicists tend to think of all physical theories, including the Standard Model, as effective field theories with respect to new physics at higher energies.” The result is an infinite regression of such theories, and thus a renunciation of the search for a ‘final theory’ — entirely the opposite of what you might think physics is trying to do, if you judge from popular accounts (or occasionally, from their own words).

Effective field theories are a way of not having to answer everything at once. But if they simply mount up into an infinite tower, it will be an ungainly edifice at best. As philosopher of science Stephan Hartmann at Tilburg University in the Netherlands has put it, the predictive power of such a composite theory would steadily diminish “just as the predictive power of the Ptolemaic system went down when more epicycles were added” [4].

Einstein seemed to have an intimation of this. He expressed discomfort that his theory of relativity was based not simply on known facts but on an a priori postulate about the speed of light. He seemed to sense that this made it less fundamental.

These and other foundational issues are not new to LHC physics, but by probing the limits of the Standard Model the new collider could bring them to the fore. All this suggests that it would be a shame if the results were presented simply as data points to be compared against theoretical predictions, as though to coolly assess the merits of various well-understood proposals. The really exciting fact is that the LHC should mark the end of one era — defined by the Standard Model — and the beginning of the next. And at this point, we do not even know the appropriate language to describe what will follow — whether, for example, it will be rooted in new symmetry principles (such as supersymmetry, which relates hitherto distinct particles), or extra dimensions, or something else. So let’s acknowledge and even celebrate our ignorance, which is after all the springboard of the most creative science.

References
1. Grinbaum, A. Preprint at http://www.arxiv.org/abs/0806.4268 (2008).
2. Gross, D. in Conceptual Foundations of Quantum Field Theory Cao, T. Y. (ed.) (Cambridge Univ. Press, 1999).
3. Giudice, G. F. Preprint at http://www.arxiv.org/abs/0801.2562 (2008).
4. Hartmann, S. Stud. Hist. Phil. Mod. Phys. 32, 267-304 (2001).

3 comments:

JimmyGiro said...

Presumably, as this is science by committee, their eminences will have most of the theories and hypotheses ready sorted into various factions, else it would be quite a dull and aimless meeting. If so, then possibly we will have rapid conclusions from the finish of the first experiments, unlike a set of scans from astronomical observation, which take many years to analyse.

My question is, have they kept enough of the budget for the extra car park space? They'll need it if the results don't fit the maffs...

Rationalists to the left, empiricists to the right; into the valley of dense matter rode the committee. In car-park space, only the attendant can hear you scream.

uhfdf said...

歐美a免費線上看,熊貓貼圖區,ec成人,聊天室080,aaa片免費看短片,dodo豆豆聊天室,一對一電話視訊聊天,自拍圖片集,走光露點,123456免費電影,本土自拍,美女裸體寫真,影片轉檔程式,成人視訊聊天,貼圖俱樂部,辣妹自拍影片,自拍電影免費下載,電話辣妹視訊,情色自拍貼圖,卡通做愛影片下載,日本辣妹自拍全裸,美女裸體模特兒,showlive影音聊天網,日本美女寫真,色情網,台灣自拍貼圖,情色貼圖貼片,百分百成人圖片 ,情色網站,a片網站,ukiss聊天室,卡通成人網,3級女星寫真,080 苗栗人聊天室,成人情色小說,免費成人片觀賞,

傑克論壇,維納斯成人用品,免費漫畫,內衣廣告美女,免費成人影城,a漫,國中女孩寫真自拍照片,ut男同志聊天室,女優,網友自拍,aa片免費看影片,玩美女人短片試看片,草莓論壇,kiss911貼圖片區,免費電影,免費成人,歐美 性感 美女 桌布,視訊交友高雄網,工藤靜香寫真集,金瓶梅免費影片,成人圖片 ,女明星裸體寫真,台灣處女貼圖貼片區,成人小遊戲,布蘭妮貼圖片區,美女視訊聊天,免費情色卡通短片,免費av18禁影片,小高聊天室,小老鼠論壇,免費a長片線上看,真愛love777聊天室,聊天ukiss,情色自拍貼圖,寵物女孩自拍網,免費a片下載,日本情色寫真,美女內衣秀,色情網,

liwo said...

av自拍,臺灣18歲成人免費,avon,正妹強力牆,免費線上成人影片,免費遊戲,a片貼圖,正妹圖片,3d美女圖,杜蕾斯免費a片,蓬萊仙山寫真集,a片網站,哈拉網路成人區,sex女優王國,性感美女,自拍密錄館,18禁卡通,爽翻天成人網,go2av,網拍模特兒應徵,台灣18成人,制服美女,小老鼠成人,成人光碟,金瓶影片交流區,85cc免費影城,成人交友,蓬萊仙山寫真集,無碼,正妹強力牆,嘟嘟情色網,影片轉檔程式,免費成人片觀賞,拓網交友,松島楓免費影片,色美眉部落格,18成人avooo,美腿論壇,辣媽辣妹,露點寫真,哈雷聊天室,18禁影片,看a片,美女工廠,影音城論壇,美女影片,免費遊戲,免費算,小魔女貼影片,a片貼圖,美腿褲襪高跟鞋,av女優王國,觀月雛乃影片,性感美女,

女優王國,免費無碼a片,0800a片區,免費線上遊戲,無名正妹牆,成人圖片,寫真美女,av1688影音娛樂網,dodo豆豆聊天室,網拍模特兒,成人文學,免費試看a片,a片免費看,成人情色小說,美腿絲襪,影片下載,美女a片,人體寫真模特兒,熊貓成人貼,kiss情色,美女遊戲區,104 貼圖區,線上看,aaa片免費看影片,天堂情色,躺伯虎聊天室,洪爺情色網,kiss情色網,貼影區,雄貓貼圖,080苗栗人聊天室,都都成人站,尋夢園聊天室,a片線上觀看,無碼影片,情慾自拍,免費成人片,影音城論壇,情色成人,最新免費線上遊戲,a383影音城,美腿,色情寫真,xxx383成人視訊,視訊交友90739,av女優影片,