Engineering for the better?
[This is the pre-edited version of my latest Muse column for Nature News.]
Many of the grand technological challenges of the century ahead are inseparable from their sociopolitical context.
At the meeting of the American Association for the Advancement of Science in Boston last week, a team of people selected by the US National Academy of Engineering identified 14 ‘grand challenges for engineering’ that would help make the world “a more sustainable, safe, healthy, and joyous – in other words, better- place.”
It’s heartening to see engineers, long dismissed as the lumpen, dirty-handed serfs labouring at the foot of science’s lofty citadel, asserting in this manner their subject’s centrality to our future course. Without rehearsing again the debates about the murky boundaries between pure and applied science, or science and technology, it’s rather easy to see that technologists have altered human culture in ways that scientists never have. Plato, Galileo, Darwin and Einstein have reshaped our minds, but there is hardly an action we can take in the industrialized world that does not feel the influence of engineering.
This, indeed, is why one can argue that a moral, ethical and generally humanistic sensitivity is needed in engineering even more than it is in the abstract natural sciences. It is by the same token the reason why engineering is a political as well as a technological activity: whether they are making dams or databases, engineers are both moving and being moved by the sociopolitical landscape.
This is abundantly clear in the Grand Challenges project. The vision it outlines is, by and large, a valuable and praiseworthy one. It recognizes explicitly that “the most difficult challenge of all will be to disperse the fruits of engineering widely around the globe, to rich and poor alike.” Its objectives, the statement says are “goals for all the world’s people.”
Yet some of the problems identified arguably say more about the current state of mind of Western culture than about what engineering can do or what goals are most urgent. Two of the challenges are concerned with security – or what the committee calls vulnerability – and two focus on the personalization of services – health and education – that have traditionally been seen as generalized ‘one size fits all’ affairs. There are good arguments why it is worthwhile recognizing individual differences – not all medicines have the same effect on everyone (in either good or bad ways), and not everyone learns in the same way. But there is surely a broader political dimension to the notion that we seem now to demand greater tailoring of public services to our personal needs, and greater protection from ‘outsiders’.
What is particularly striking is how ‘vulnerability’ and security are here no longer discussed in terms of warfare (one of the principal engines of technological innovation since ancient times) but attacks on society from nefarious, faceless aggressors such as nuclear and cyber terrorists. These are real threats, but presented this way in terms of engineering challenges makes for a very odd perspective.
For example, let us say (for the sake of argument) that there exists a country where guns can be readily bought at the corner store. How can we make the law-abiding citizen safe from firearms falling into the hands of homicidal madmen? The answers proposed here are, in effect, to develop technologies for making the stores more secure, for keeping track of where the guns are, for cleaning up after a massacre, and for finding out who did it. To which one might be tempted to add another humble suggestion: what if the shops did not sell guns?
To put it bluntly, discussing nuclear security without any mention of nuclear non-proliferation agreements and efforts towards disarmament is nonsensical. In one sense, perhaps it is understandably difficult for a committee on engineering to suggest that part of the solution to a problem might lie with not making things. Cynics might also suspect a degree of political expediency at work, but I think it is more reasonable to say that questions of this nature don’t really fall into the hands of engineers at all but are contingent on the political climate. To put it another way, I suspect the most stimulating lists of ways to make the world better won’t just include things that everyone can reasonably deem desirable, but things that some will not.
The limited boundaries of the debate are the central shortcoming of an exercise like this. It was made clear from the outset that all these topics are being considered purely from an engineering point of view, but one can hardly read the list without feeling that it is really attempting to enumerate all the big challenges facing humankind that have some degree of technical content. The solutions, and perhaps even the choices, are then bound to disappoint, because just about any challenge of this sort does not depend on technology alone, or even primarily.
Take health, for example. Most of the diseases in the world (and AIDS is now only a partial exception) are ones we know already how to prevent, cure or keep at bay. Technology can play a part in making such treatments cheaper or more widely available (or, in cases of waterborne diseases, say, not necessary in the first place) – but in the immediate future, health informatics and personalized medicine are hardly the key requirements. Economics, development and diet are likely to have a much bigger effect on global health than cutting-edge medical science.
None of this is to deny the value of the Grand Challenges project. But it highlights the fact that one the most important goals is to integrate science and technology with other social and cultural forces. This is a point made by philosopher of science Nicholas Maxwell in his 1984 book From Knowledge to Wisdom (a new edition of which has just been published by Pentire Press).
To blame science for the ills of the world is to miss the point, says Maxwell. “What we urgently need to do - given the unprecedented powers bequeathed to us by science - is to learn how to tackle our immense, intractable problems of living in rather more intelligent, humane, cooperatively rational ways than we do at present… We need a new kind of academic inquiry that gives intellectual priority to our problems of living - to clarifying what our problems are, and to proposing and critically assessing the possible solutions.”
He proposes that, to this end, the natural sciences should include three domains of discussion: not just evidence and theory, but aims, “this last category covering discussion of metaphysics, values and politics.” There is certainly much to challenge in Maxwell’s position. Trofim Lysenko’s fatefully distorted genetics in the Stalinist Soviet Union, for example, had ‘values and politics’; and the hazards of excessively goal-driven research are well-known in this age of political and economic short-termism.
Maxwell tackles such criticisms in his book, but his wider point – that science and technology should not just be cognisant of social and ethical factors but better integrated with them – is important. The Grand Challenges committee is full of wise and humane technologists. Next time, it would be interesting to include some who are the former but not the latter.
3 comments:
To be honest, I thought it looked like an A-level student's technological to-do list
db
But surely David, if it had anything to do with today's A-levels then there would have been a catagory entitled "Need more wimin in science and tech."
Personally I think the list is a devilishly clever ploy to investigate the public's attitudes to science and engineering. On the website, viewers are requested to vote; this data can then be correlated with the usual mumbo jumbo of the social sciences to reveal the 'public's feelings'.
Alternatively it's genuine(!?), in which case the search for a reversed engineered brain is tantamount to saying that of 6 billion souls, the authors lack faith in the human races ability to be as wise as they'd like.
I read your article in Nature about Chartres, and I was absolutely dazzled and delighted. I have sometimes used the metaphor of the cathedral to indicate the grandeur of the underlying unified dynamic structure of the universe - Einstein's vision - but it never occurred to me that the most beautiful cathedral in the world (which I revisited this summer) might have been built with something like this in mind. I am also fascinated to see that you have had a look at my "From Knowledge to Wisdom". I would love to hear what you think is wrong with my thesis and argument. Best wishes, Nick Maxwell
www.nick-maxwell.demon.co.uk
Post a Comment