Friday, December 22, 2006

Pushing protons around

[This is the pre-edited version of my Crucible column for the February issue of Chemistry World.]

Life is pretty simple, when you come down to it. It’s a matter of shovelling stuff from one side of a wall to the other – the ‘stuff’ being hydrogen ions, and the wall a cell membrane. The biochemistry that follows from this is fearsome, but at root life is driven by piling up hydrogen ions and then letting them flow, like water released from a dam.

This imbalance of protons across a membrane creates a so-called protonmotive force. It is generated by proton pumps: proteins that can actively move protons ‘uphill, against a concentration gradient. They need energy to do that, and in the light-harvesting chloroplasts of plants that comes ultimately from sunlight, which sets an electron jumping between molecules. In our mitochondria the energy is generated by reactions that break down carbohydrates. In either case, the protonmotive force is used to power the enzyme ATP synthase, which rotates like a water wheel as it lets protons flow through, producing energy-rich ATP in the process.

So if that’s life in a nutshell, these proton pumps clearly need to be efficient and smooth-running pieces of molecular machinery. Even so, the ingenuity life displays in conducting and controlling the movement of protons is breathtaking.

That life exists in water is a boon from the outset – because one of the things water does that other liquids cannot is transport protons rapidly. The hydrogen ion travels faster than other small cations in water by hopping along hydrogen-bonded chains of water molecules: rather like a Newton’s cradle, a proton hits one end of the chain and almost at once (figuratively speaking) another proton pops off the other end. This hopping, called the Grotthuss mechanism after the nineteenth-century German scientist who proposed the basic idea, is exploited by biomolecules to shift protons. Some proteins, such as the light-powered bacterial proton pump bacteriorhodopsin and some cytochromes, are threaded by ‘water wires’, strings of water molecules that act as proton-conducting pathways.

A water wire also winds through the membrane protein aquaporin, which transports water across cell walls. But for aquaporin, letting protons through could be disastrous, as it would disrupt the delicate balance of pH and charge across the membrane. So it has to achieve the seemingly impossible feat of transporting water but not hydrogen ions. How it does so is still not fully clear, but one idea is that the water wire contains a defect: hydrogen-bonding to the amino-acid residues within the pore forces two waters in the chain to sit ‘back to back’, so that a proton can’t jump between them.

That would be an extraordinarily delicate feat of molecular manipulation. But it is possibly trumped by the latest revelation about why proton pumping works so well. Magnus Brändén of Stockholm University and his colleagues (Proc. Natl Acad. Sci. USA, doi:10.1073/pnas.0605909103) say that there are, in effect, little proton circuits written onto the surfaces of cell membranes that help guide protons from a transporter – a pump protein – to molecules that exploit the protonmotive force, such as ATP synthase. The image, then, is not that of a pump spouting out protons into the cytoplasm, where some gradually drift over to where they’re needed; instead, the protons pop out of the pump’s mouth and stick to the membrane before proceeding to hop across it. That way, fewer get lost.

In effect, then, the membrane lipids act as proton-collecting antennas – rather as accessory pigments serve as light-harvesting antennas to shunt light energy onto the photosynthetic reaction centre in photosynthesis.

This idea has been mooted for years, but Brändén and colleagues have pinned it down by looking at the protonation of a single fluorescein dye molecule embedded in the wall of liposomes (closed, cell-like assemblies of lipids). Protonation changes the dye’s fluorescence, and so fluctuations in its brightness can be related to the rate of proton exchange with the surroundings. The researchers show that this happens at a faster rate than would be expected if protons were just being exchanged with the water – so long as the lipid head groups can themselves be protonated. The lipids gather protons and pass them around.

It’s a reminder that molecular biology isn’t just about the cleverness of proteins and nucleic acids. Even the molecules often assumed to be just part of the background or the scaffolding, such as lipids and water, may have inventive roles to play.


uhfdf said...

歐美a免費線上看,熊貓貼圖區,ec成人,聊天室080,aaa片免費看短片,dodo豆豆聊天室,一對一電話視訊聊天,自拍圖片集,走光露點,123456免費電影,本土自拍,美女裸體寫真,影片轉檔程式,成人視訊聊天,貼圖俱樂部,辣妹自拍影片,自拍電影免費下載,電話辣妹視訊,情色自拍貼圖,卡通做愛影片下載,日本辣妹自拍全裸,美女裸體模特兒,showlive影音聊天網,日本美女寫真,色情網,台灣自拍貼圖,情色貼圖貼片,百分百成人圖片 ,情色網站,a片網站,ukiss聊天室,卡通成人網,3級女星寫真,080 苗栗人聊天室,成人情色小說,免費成人片觀賞,

傑克論壇,維納斯成人用品,免費漫畫,內衣廣告美女,免費成人影城,a漫,國中女孩寫真自拍照片,ut男同志聊天室,女優,網友自拍,aa片免費看影片,玩美女人短片試看片,草莓論壇,kiss911貼圖片區,免費電影,免費成人,歐美 性感 美女 桌布,視訊交友高雄網,工藤靜香寫真集,金瓶梅免費影片,成人圖片 ,女明星裸體寫真,台灣處女貼圖貼片區,成人小遊戲,布蘭妮貼圖片區,美女視訊聊天,免費情色卡通短片,免費av18禁影片,小高聊天室,小老鼠論壇,免費a長片線上看,真愛love777聊天室,聊天ukiss,情色自拍貼圖,寵物女孩自拍網,免費a片下載,日本情色寫真,美女內衣秀,色情網,

liwo said...


女優王國,免費無碼a片,0800a片區,免費線上遊戲,無名正妹牆,成人圖片,寫真美女,av1688影音娛樂網,dodo豆豆聊天室,網拍模特兒,成人文學,免費試看a片,a片免費看,成人情色小說,美腿絲襪,影片下載,美女a片,人體寫真模特兒,熊貓成人貼,kiss情色,美女遊戲區,104 貼圖區,線上看,aaa片免費看影片,天堂情色,躺伯虎聊天室,洪爺情色網,kiss情色網,貼影區,雄貓貼圖,080苗栗人聊天室,都都成人站,尋夢園聊天室,a片線上觀看,無碼影片,情慾自拍,免費成人片,影音城論壇,情色成人,最新免費線上遊戲,a383影音城,美腿,色情寫真,xxx383成人視訊,視訊交友90739,av女優影片,