Is anyone any longer in any serious doubt that the leaders of the Brexit campaign feel they can just come out with whatever fact-free, delirious twaddle jumps into their head and expect us to swallow it?
It’s getting quite surreal now. Michael Gove, faced with a question on LBC Radio about what to make of all the top economists who have warned of the dire consequences of the UK leaving the European Union, decided that there was a parallel here with the way Einstein was treated in Germany in the 1930s.
“We have to be careful about historical comparisons”, said Gove, “but Albert Einstein during the 1930s was denounced by the German authorities for being wrong and his theories were denounced and one of the reasons of course he was denounced was because he was Jewish. They got 100 German scientists in the pay of the government to say that he was wrong and Einstein said, ‘Look, if was wrong, one would have been enough’.”
So, did you get that? Michael Gove is Einstein, and the economists who have decided that Brexit would be economically bad are like Nazis in the pay of the government.
Except that he is simply peddling half-truths and fictions. Gove clearly thinks these “100 scientists” were put up to it by the Nazi authorities. But the infamous book A Hundred Authors Against Einstein was published in 1931, before the Nazis came to power and while Germany was still ruled by the Weimar government - who Einstein supported.
And as the title suggests, they weren’t “100 scientists”. They were a ragbag of academics and other “intellectuals” of various stamps, among which there was only one real physicist, an insignificant (and retired) figure called Karl Strehl. They had no expertise, and evidently had not the faintest idea what to make of relativity. The book wasn’t taken in the slightest bit seriously by the German scientific community, and the vast majority of leading physicists in Germany supported Einstein’s ideas. Of course A Hundred Authors (most of them were present in name only in the book – only a few expressed their views) was motivated in considerable part by anti-Semitism, as well as objections to Einstein’s internationalism. How that is supposed, in Gove’s mind, to bear on the reasons for the economists’ position on Brexit is anyone’s guess. Do they reach conclusions different to his because they are similarly bigoted in some fashion? The parallel is as meaningless as it is fatuous. Gove faced a very serious question here and he had nothing to say behind falsehoods and bluster. If Brexit wins, we can expect a lot more of the same.
Tuesday, June 21, 2016
Sunday, June 12, 2016
Best of both worlds in quantum computing
Here's an expanded version of my news story for Nature on Google's new quantum computer. It's a somewhat complicated story, so a bit more explanation might be useful.
____________________________________
Combining the best of two leading approaches might be the way to make a full-scale multipurpose quantum computer.
A universal quantum computer, which can any computational problem, has been a goal of research on quantum computing since its origins three decades ago. A team in California has now made an experimental prototype of such a device. It uses nine solid-state quantum bits (qubits), which can be configured to solve a wide range of problems and has the potential to be scaled up to larger systems.
The new device was made by Rami Barends and coworkers at Google’s research laboratories in Santa Barbara, collaborating with the group of physicist John Martinis at the University of California at Santa Barbara and with a team at the University of the Basque Country in Bilbao, Spain.
“It’s terrific work in many respects, and is filled with valuable lessons for the quantum computing community”, says Daniel Lidar, a quantum-computing expert at the University of Southern California in Los Angeles.
The Google circuit combines some of the advantages of the two main approaches to quantum computing so far. One is to build the computer’s circuits from qubits in particular arrangements geared to an algorithm for solving a specific problem. This is analogous to a tailor-made digital circuit in a conventional microprocessor made from classical bits. Much of the theory of quantum computing is based on this digital approach, which includes methods for the all-important problem of error correction to avoid errors accumulating and derailing a calculation. But so far practical implementations have been possible only with a handful of qubits.
The other approach is called adiabatic quantum computing (AQC). Here, instead of encoding an algorithm in a series of digital-logic operations between qubits, the computer encodes the problem of interest in the states of a pool of qubits, gradually evolving and adjusting the interactions between them to “shape” their collective quantum state. In principle just about any problem can be encoded into the same group of qubits.
This is an analog rather than a digital approach, and is limited by the effects of random noise, which introduces errors that can’t be corrected as systematically as in digital circuits. What’s more, there’s no guarantee that all problems can be solved efficiently this way, says Barends.
While most research on quantum computing uses the digital approach, adiabatic quantum computing has furnished the first commercial devices, made by D-Wave Systems in Burnaby, Canada, for about $15 million apiece. Google owns a D-Wave device, but its own researchers are searching for ways to improve the method.
In particular, they wanted to find some way of implementing error correction. Without it, scaling up AQC to more qubits will be difficult, since errors will accumulate more quickly in larger systems. With that in mind, Barends and colleagues decided to combine the AQC method with the digital approach, which has a well developed theory of error correction [1].
“Implementing adiabatic optimization on a universal quantum computer is not a new idea”, explains Andrew Childs of the University of Maryland. “But now the Google group has actually carried this out, which makes for a nice test of their system.”
To do that, the Google team uses a row of nine qubits, fashioned from cross-shaped films of aluminium about 400 micrometres across from tip to tip, deposited on a sapphire surface. The aluminium becomes superconducting when cooled to 1.1 degrees Kelvin, in which state its electrical resistance falls to zero. (The Google team actually operates the device at just 0.02 K to reduce the thermal noise.) . This is state-of-the-art technology for qubits, Lidar says.
Superconductivity is a quantum-mechanical effect, and a bit of information – a 1 or 0 – can be encoded in different states of the superconducting current. Crucially, these quantum bits can be placed in superposition states, simultaneously encoding a 1 and 0 – the key to the power of quantum computing.
The interactions between neighbouring qubits are controlled by linking them via logic gates. Using these gates, the nine qubits can be steered step by step into a state that encodes the solutions to a problem. As a demonstration, the researchers let their array simulate a system of coupled magnetic “spins”, like a row of magnetic atoms – a problem well explored in condensed-matter physics. They can then interrogate the states of the qubits to determine the lowest-energy state of the spins they represent.
That’s a fairly simple problem to solve on a classical computer too. But the researchers show that their device is also able to handle so-called “non-stoquastic” problems, which aren’t tractable on classical computers. These include simulations of the interactions between many electrons, needed to make exact calculations in quantum chemistry. The ability to simulate molecules and materials at the quantum level could be one of the most valuable applications of quantum computing.
A great advantage of this new approach is that it allows for the incorporation of quantum error correction, says Lidar. Although the researchers didn’t demonstrate that in this work, the Google team has previously shown how error correction might be achieved on their nine-qubit device [2].
“Quantum error correction is needed to allow for addressing really large problems, otherwise with each qubit and coupler you add a source of noise”, says Barends’ co-author Alireza Shabani at Google. “With error correction, our approach becomes a general-purpose algorithm that is in principle scalable to an arbitrarily large quantum computer.”
The Google device is still very much a prototype. “With early small-scale devices like this one, it’s not yet possible to tackle problems that cannot be solved on traditional classical hardware”, says Lidar.
But “in a couple of years it may be possible to work with devices having more than 40 qubits”, he adds. “At that point it will become possible to simulate quantum dynamics that is inaccessible on classical hardware, which will mark the advent of ‘quantum supremacy’.”
1. Barends, R. et al., Nature doi:10.1038/nature17658 (2016) here.
2 . Kelly, J. et al., Nature 519, 66-69 (2015) here.
____________________________________
Combining the best of two leading approaches might be the way to make a full-scale multipurpose quantum computer.
A universal quantum computer, which can any computational problem, has been a goal of research on quantum computing since its origins three decades ago. A team in California has now made an experimental prototype of such a device. It uses nine solid-state quantum bits (qubits), which can be configured to solve a wide range of problems and has the potential to be scaled up to larger systems.
The new device was made by Rami Barends and coworkers at Google’s research laboratories in Santa Barbara, collaborating with the group of physicist John Martinis at the University of California at Santa Barbara and with a team at the University of the Basque Country in Bilbao, Spain.
“It’s terrific work in many respects, and is filled with valuable lessons for the quantum computing community”, says Daniel Lidar, a quantum-computing expert at the University of Southern California in Los Angeles.
The Google circuit combines some of the advantages of the two main approaches to quantum computing so far. One is to build the computer’s circuits from qubits in particular arrangements geared to an algorithm for solving a specific problem. This is analogous to a tailor-made digital circuit in a conventional microprocessor made from classical bits. Much of the theory of quantum computing is based on this digital approach, which includes methods for the all-important problem of error correction to avoid errors accumulating and derailing a calculation. But so far practical implementations have been possible only with a handful of qubits.
The other approach is called adiabatic quantum computing (AQC). Here, instead of encoding an algorithm in a series of digital-logic operations between qubits, the computer encodes the problem of interest in the states of a pool of qubits, gradually evolving and adjusting the interactions between them to “shape” their collective quantum state. In principle just about any problem can be encoded into the same group of qubits.
This is an analog rather than a digital approach, and is limited by the effects of random noise, which introduces errors that can’t be corrected as systematically as in digital circuits. What’s more, there’s no guarantee that all problems can be solved efficiently this way, says Barends.
While most research on quantum computing uses the digital approach, adiabatic quantum computing has furnished the first commercial devices, made by D-Wave Systems in Burnaby, Canada, for about $15 million apiece. Google owns a D-Wave device, but its own researchers are searching for ways to improve the method.
In particular, they wanted to find some way of implementing error correction. Without it, scaling up AQC to more qubits will be difficult, since errors will accumulate more quickly in larger systems. With that in mind, Barends and colleagues decided to combine the AQC method with the digital approach, which has a well developed theory of error correction [1].
“Implementing adiabatic optimization on a universal quantum computer is not a new idea”, explains Andrew Childs of the University of Maryland. “But now the Google group has actually carried this out, which makes for a nice test of their system.”
To do that, the Google team uses a row of nine qubits, fashioned from cross-shaped films of aluminium about 400 micrometres across from tip to tip, deposited on a sapphire surface. The aluminium becomes superconducting when cooled to 1.1 degrees Kelvin, in which state its electrical resistance falls to zero. (The Google team actually operates the device at just 0.02 K to reduce the thermal noise.) . This is state-of-the-art technology for qubits, Lidar says.
Superconductivity is a quantum-mechanical effect, and a bit of information – a 1 or 0 – can be encoded in different states of the superconducting current. Crucially, these quantum bits can be placed in superposition states, simultaneously encoding a 1 and 0 – the key to the power of quantum computing.
The interactions between neighbouring qubits are controlled by linking them via logic gates. Using these gates, the nine qubits can be steered step by step into a state that encodes the solutions to a problem. As a demonstration, the researchers let their array simulate a system of coupled magnetic “spins”, like a row of magnetic atoms – a problem well explored in condensed-matter physics. They can then interrogate the states of the qubits to determine the lowest-energy state of the spins they represent.
That’s a fairly simple problem to solve on a classical computer too. But the researchers show that their device is also able to handle so-called “non-stoquastic” problems, which aren’t tractable on classical computers. These include simulations of the interactions between many electrons, needed to make exact calculations in quantum chemistry. The ability to simulate molecules and materials at the quantum level could be one of the most valuable applications of quantum computing.
A great advantage of this new approach is that it allows for the incorporation of quantum error correction, says Lidar. Although the researchers didn’t demonstrate that in this work, the Google team has previously shown how error correction might be achieved on their nine-qubit device [2].
“Quantum error correction is needed to allow for addressing really large problems, otherwise with each qubit and coupler you add a source of noise”, says Barends’ co-author Alireza Shabani at Google. “With error correction, our approach becomes a general-purpose algorithm that is in principle scalable to an arbitrarily large quantum computer.”
The Google device is still very much a prototype. “With early small-scale devices like this one, it’s not yet possible to tackle problems that cannot be solved on traditional classical hardware”, says Lidar.
But “in a couple of years it may be possible to work with devices having more than 40 qubits”, he adds. “At that point it will become possible to simulate quantum dynamics that is inaccessible on classical hardware, which will mark the advent of ‘quantum supremacy’.”
1. Barends, R. et al., Nature doi:10.1038/nature17658 (2016) here.
2 . Kelly, J. et al., Nature 519, 66-69 (2015) here.
Tuesday, May 31, 2016
Is music brain food?
The latest issue of the Italian science magazine Sapere is all about food. So this seemed a fitting theme for my column on music cognition.
___________________________________________________
‘If music be the food of love, play on, give me excess of it”, says Duke Orsino in Shakespeare’s Twelfth Night. The nineteenth-century German music critic Eduard Hanslick wasn’t impressed by that sentiment. It doesn’t matter what music it is, the Duke implies; I just want a load of it, like a big slice of cheesecake, to make me feel good.
But after all, mightn’t music be simply cheesecake for the ears? That is what the cognitive scientist Steven Pinker suggested in his book How the Mind Works. Music, he proposed, is simply a parasite that exploits auditory and cognitive processes which evolved for other reasons, just as cheesecake exploits a primal urge to grab fats and sugars. As he put it, “Music appears to be a pure pleasure technology, a cocktail of recreational drugs that we ingest through the ear to stimulate a mass of pleasure circuits at once.”
After all, Pinker went on, “Compared with language, vision, social reasoning, and physical know-how, music could vanish from our species and the rest of our lifestyle would be virtually unchanged.”
These claims provoked outrage. Imagine comparing Bach’s B minor Mass to an Ecstasy pill! And by suggesting that music could vanish from our species, Pinker didn’t appear much mind if it did. So his remarks were read as a challenge to prove that music has a fundamental evolutionary value, that it has somehow helped us to survive as a species. It seemed as though the very dignity and value of music itself was at stake.
Pinker might be wrong, of course. Indeed, recent research suggests that there might be neurons in our auditory cortex dedicated solely to music, suggesting that sensitivity to music could be a specific evolutionary adaptation, not a byproduct of other adaptive traits. But whether or not that’s so is rather beside the point. Music is an inevitable product of human intelligence, regardless of whether it’s genetically hard-wired. The human mind naturally possesses the mental apparatus needed for musicality, and will make use of these tools whether we intend it or not. Music isn’t something we do by choice – it’s ingrained in our auditory, cognitive, memory and motor functions, and is implicit in the way we construct a sonic landscape from the noises we hear.
So music couldn’t vanish from our species without fundamentally changing our brains. The sixth-century philosopher Boethius seemed to understand this already: music, he said, “is so naturally united with us that we cannot be free from it even if we so desired.” Cheesecake, on the other hand – I can take it or leave it.
___________________________________________________

‘If music be the food of love, play on, give me excess of it”, says Duke Orsino in Shakespeare’s Twelfth Night. The nineteenth-century German music critic Eduard Hanslick wasn’t impressed by that sentiment. It doesn’t matter what music it is, the Duke implies; I just want a load of it, like a big slice of cheesecake, to make me feel good.
But after all, mightn’t music be simply cheesecake for the ears? That is what the cognitive scientist Steven Pinker suggested in his book How the Mind Works. Music, he proposed, is simply a parasite that exploits auditory and cognitive processes which evolved for other reasons, just as cheesecake exploits a primal urge to grab fats and sugars. As he put it, “Music appears to be a pure pleasure technology, a cocktail of recreational drugs that we ingest through the ear to stimulate a mass of pleasure circuits at once.”
After all, Pinker went on, “Compared with language, vision, social reasoning, and physical know-how, music could vanish from our species and the rest of our lifestyle would be virtually unchanged.”
These claims provoked outrage. Imagine comparing Bach’s B minor Mass to an Ecstasy pill! And by suggesting that music could vanish from our species, Pinker didn’t appear much mind if it did. So his remarks were read as a challenge to prove that music has a fundamental evolutionary value, that it has somehow helped us to survive as a species. It seemed as though the very dignity and value of music itself was at stake.
Pinker might be wrong, of course. Indeed, recent research suggests that there might be neurons in our auditory cortex dedicated solely to music, suggesting that sensitivity to music could be a specific evolutionary adaptation, not a byproduct of other adaptive traits. But whether or not that’s so is rather beside the point. Music is an inevitable product of human intelligence, regardless of whether it’s genetically hard-wired. The human mind naturally possesses the mental apparatus needed for musicality, and will make use of these tools whether we intend it or not. Music isn’t something we do by choice – it’s ingrained in our auditory, cognitive, memory and motor functions, and is implicit in the way we construct a sonic landscape from the noises we hear.
So music couldn’t vanish from our species without fundamentally changing our brains. The sixth-century philosopher Boethius seemed to understand this already: music, he said, “is so naturally united with us that we cannot be free from it even if we so desired.” Cheesecake, on the other hand – I can take it or leave it.
Wednesday, May 25, 2016
Still selfish after all these years?
The 40th anniversary of the publication of Richard Dawkins’ The Selfish Gene is a cause for celebration, as I’ve said.
This anniversary has also reawakened the debate about the book’s title. Do we still think genes are “selfish”? Siddhartha Mukherjee's The Gene makes no mention of the idea, while talking about pretty much everything else. It’s no surprise that Dawkins sticks to his guns, of course. He justifies it in this fashion:
"If you ask what is this adaptation good for, why does the animal do this – have a red crest, or whatever it is - the answer is always, for the good of the genes that made it. That is the central message of The Selfish Gene and that remains true, and reinforced."
This is a statement crafted to brook no dissent. It says nothing about selfishness of genes. It says that adaptations are, well, adaptive, in that they help the organism survive and pass on its genes. But for a gene to be metaphorically selfish, it must surely promote its survival at the expense of other genes.
I’m not going to rehearse again the argument that the “selfish gene” promotes the misconception – which I suspect is now very common – that different genes, not different alleles of the same gene, compete with one another. (In the comment to my blog post above, Matt Ridley points out that there can be exceptions, but at such a stretch as to prove the rule. Still, as Matt says, we're basically on the same page.) The fact is that genes can only propagate with the help of other genes. John Maynard Smith recognized this in the 1970s, and so did Dawkins. He chose the wrong title, and the wrong metaphor, and wrote a superb book about them.
I find it curious that there’s such strong opposition to that fact. For example, I’m struck by how, when the selfish-gene trope is questioned, defenders will often point to rare circumstances in which genes really do seem to be “selfish” – which is to say, where propagation of a gene might be deleterious to the success of an organism (and thus to its other genes). It is hard to overstate how bizarre this argument is. It justifies a metaphor designed to explain the genetic basis of evolutionary adaptation by pointing to a situation in which genetic selection is non-adaptive. You might equally then say that, when genes are truly selfish, natural selection doesn’t “work”.
What is meant to be implied in such arguments is that this selfishness is always there lurking in the character of genes, but that it is usually masked and only bursts free in exceptional circumstances. That, of course, underlines the peril of such an anthropomorphic metaphor in the first place. The notion that genes have any “true” character is absurd. Genetic evolution is a hugely complex process – far more complex than Dawkins could have known in 1976. And complex processes are rarely served well by simple, reductionistic metaphors.
Think of it this way. There are situations in which Darwinian natural selection favours the emergence of sub-optimal fitness (for example, here). This is no big surprise, and certainly doesn’t throw into doubt the fundamental truth of Darwin’s idea. However, we could then, in the spirit of the above, argue that the real character of natural selection is to favour the less-than-fittest, but this is usually masked by the emergence of optimal fitness.
There is an old guard of evolutionary theorists, battle-scarred from bouts with creationism and intelligent design, who are never going to accept this, and who will never see why the selfish gene has become a hindrance to understanding. They can be recognized from the emotive hysteria of their responses to any such suggestion – you will find them clearly identified in David Dobbs’ excellent response to criticisms of his Aeon article on the subject. It is a shame that they have fallen into such a polarized attitude. As the other responses to David’s piece attest, the argument has moved on.
This anniversary has also reawakened the debate about the book’s title. Do we still think genes are “selfish”? Siddhartha Mukherjee's The Gene makes no mention of the idea, while talking about pretty much everything else. It’s no surprise that Dawkins sticks to his guns, of course. He justifies it in this fashion:
"If you ask what is this adaptation good for, why does the animal do this – have a red crest, or whatever it is - the answer is always, for the good of the genes that made it. That is the central message of The Selfish Gene and that remains true, and reinforced."
This is a statement crafted to brook no dissent. It says nothing about selfishness of genes. It says that adaptations are, well, adaptive, in that they help the organism survive and pass on its genes. But for a gene to be metaphorically selfish, it must surely promote its survival at the expense of other genes.
I’m not going to rehearse again the argument that the “selfish gene” promotes the misconception – which I suspect is now very common – that different genes, not different alleles of the same gene, compete with one another. (In the comment to my blog post above, Matt Ridley points out that there can be exceptions, but at such a stretch as to prove the rule. Still, as Matt says, we're basically on the same page.) The fact is that genes can only propagate with the help of other genes. John Maynard Smith recognized this in the 1970s, and so did Dawkins. He chose the wrong title, and the wrong metaphor, and wrote a superb book about them.
I find it curious that there’s such strong opposition to that fact. For example, I’m struck by how, when the selfish-gene trope is questioned, defenders will often point to rare circumstances in which genes really do seem to be “selfish” – which is to say, where propagation of a gene might be deleterious to the success of an organism (and thus to its other genes). It is hard to overstate how bizarre this argument is. It justifies a metaphor designed to explain the genetic basis of evolutionary adaptation by pointing to a situation in which genetic selection is non-adaptive. You might equally then say that, when genes are truly selfish, natural selection doesn’t “work”.
What is meant to be implied in such arguments is that this selfishness is always there lurking in the character of genes, but that it is usually masked and only bursts free in exceptional circumstances. That, of course, underlines the peril of such an anthropomorphic metaphor in the first place. The notion that genes have any “true” character is absurd. Genetic evolution is a hugely complex process – far more complex than Dawkins could have known in 1976. And complex processes are rarely served well by simple, reductionistic metaphors.
Think of it this way. There are situations in which Darwinian natural selection favours the emergence of sub-optimal fitness (for example, here). This is no big surprise, and certainly doesn’t throw into doubt the fundamental truth of Darwin’s idea. However, we could then, in the spirit of the above, argue that the real character of natural selection is to favour the less-than-fittest, but this is usually masked by the emergence of optimal fitness.
There is an old guard of evolutionary theorists, battle-scarred from bouts with creationism and intelligent design, who are never going to accept this, and who will never see why the selfish gene has become a hindrance to understanding. They can be recognized from the emotive hysteria of their responses to any such suggestion – you will find them clearly identified in David Dobbs’ excellent response to criticisms of his Aeon article on the subject. It is a shame that they have fallen into such a polarized attitude. As the other responses to David’s piece attest, the argument has moved on.
Monday, May 09, 2016
SATs are harder than you think
How’s your classical mechanics? Mine’s a bit crap. That’s why I’m having trouble working out the following question.
You have a cylinder that rotates around a horizontal axis, like the sort used to pull up buckets from wells. Around the cylinder is wrapped a rope attached to a weight. As the weight falls and the rope unwinds, you measure the time it takes to descend a certain distance.
Now you increase the mass of the cylinder – say, it’s made from iron, not wood (but of the same size). Does the weight fall more slowly? At risk of embarrassment, I’ll say that I think it does. The torque on the cylinder is the same in both cases, but what changes is the cylinder’s moment of inertia, and thereby (via torque = moment of inertia times angular acceleration) the angular acceleration. So the weight takes longer to descend the same distance when attached to the iron cylinder because the angular acceleration is less.
Also, the greater mass of the cylinder means, via Amonton’s Law, that the friction with the axis is greater in the latter case.
Am I right? Or do I need (it is quite possible) to go back to my A-level mechanics?
The reason I ask is that I am trying to understand a question in the SATs science test (now dropped, by the way) for Year 6, i.e. 11-year-olds.
You might wonder why 11-year-olds are having to grapple with torques and so forth. So am I. But they come up in this question:
Now, I suspect that the answer the pupils are expected to give is that the bigger piece of card incurs more air resistance. That is true. But it is not the only influence at play, since the card obviously adds to the rotor’s mass. So this is a rather complicated question in mechanics.
You might think I’m overthinking the problem. But I can’t see how it is ever a good idea to choose a question for which a little more knowledge makes the problem harder. Or am I just wrong here about the answer?
Elsewhere in the SATs papers you find difficulties that seem to be the result purely of bad questioning. Take this one, from an English Reading and Comprehension test. Pupils have to read the following passage:
Then they are asked
My (10-year-old) daughter was puzzled by this reference to “burning of rocks in space”. What does it mean to burn rocks in space? For one thing, you can’t do it. I mean sure, meteorites will get hot and oxidized as they fall through the atmosphere but not in space. And the frictional heating is not really about burning. “Burning up” is something of a euphemism here, and it does not mean the same thing as “burning”. The intended answer is trivial, of course: “in a flash” just means that the “burning up” happens quickly. But this question is worded in such a way that prevents it from quite making sense.
Is anyone checking this stuff, before it is unleashed on unsuspecting and highly stressed pupils and teachers?
You have a cylinder that rotates around a horizontal axis, like the sort used to pull up buckets from wells. Around the cylinder is wrapped a rope attached to a weight. As the weight falls and the rope unwinds, you measure the time it takes to descend a certain distance.
Now you increase the mass of the cylinder – say, it’s made from iron, not wood (but of the same size). Does the weight fall more slowly? At risk of embarrassment, I’ll say that I think it does. The torque on the cylinder is the same in both cases, but what changes is the cylinder’s moment of inertia, and thereby (via torque = moment of inertia times angular acceleration) the angular acceleration. So the weight takes longer to descend the same distance when attached to the iron cylinder because the angular acceleration is less.
Also, the greater mass of the cylinder means, via Amonton’s Law, that the friction with the axis is greater in the latter case.
Am I right? Or do I need (it is quite possible) to go back to my A-level mechanics?
The reason I ask is that I am trying to understand a question in the SATs science test (now dropped, by the way) for Year 6, i.e. 11-year-olds.
You might wonder why 11-year-olds are having to grapple with torques and so forth. So am I. But they come up in this question:



Now, I suspect that the answer the pupils are expected to give is that the bigger piece of card incurs more air resistance. That is true. But it is not the only influence at play, since the card obviously adds to the rotor’s mass. So this is a rather complicated question in mechanics.
You might think I’m overthinking the problem. But I can’t see how it is ever a good idea to choose a question for which a little more knowledge makes the problem harder. Or am I just wrong here about the answer?
Elsewhere in the SATs papers you find difficulties that seem to be the result purely of bad questioning. Take this one, from an English Reading and Comprehension test. Pupils have to read the following passage:

Then they are asked

My (10-year-old) daughter was puzzled by this reference to “burning of rocks in space”. What does it mean to burn rocks in space? For one thing, you can’t do it. I mean sure, meteorites will get hot and oxidized as they fall through the atmosphere but not in space. And the frictional heating is not really about burning. “Burning up” is something of a euphemism here, and it does not mean the same thing as “burning”. The intended answer is trivial, of course: “in a flash” just means that the “burning up” happens quickly. But this question is worded in such a way that prevents it from quite making sense.
Is anyone checking this stuff, before it is unleashed on unsuspecting and highly stressed pupils and teachers?
Wednesday, April 27, 2016
Where's the soul?
I worry much more than I should about whether embryos have souls. That’s to say, I worry about how those folks who believe that at some stage humans are granted a soul by the grace of God make sense of this question.
But as I discovered while reviewing Henry Greely’s book The End of Sex, Father Tadeusz Pacholcyzk – who has a doctorate in neuroscience from Yale and writes for the National Catholic Bioethics Center in Philadelphia – has at least cleared up one thing for me. Whether or not embryos have a soul should, he says, have no bearing on our judgement about the rights and wrongs of using human embryo tissue for research into stem cells, or presumably for research into anything else. He clarifies that Catholic tradition has no unanimous verdict or tradition on the precise moment of ensoulment. However, Saint Augustine, rarely consulted for his knowledge of embryology, “seemed to shift his opinion back and forth during his lifetime between immediate and delayed ensoulment”. No wonder; it’s a tough question. Much, much tougher, indeed, than Augustine could ever have imagined, because of course we can’t expect him to have known that only about 12% of fertilized eggs in vivo will develop beyond three months of pregnancy. We had best assume, then, that ensoulment is delayed until some time after that, for otherwise heaven will be overwhelmingly filled with souls of embryos less than three months old. I don’t think any of the Christian Fathers ever imagined that heaven should be as odd a place as that.
The point, Pacholcyzk says, is irrelevant in any case, because a human embryo at any stage is destined for a soul “and should not be cannibalized for stem cell extraction”. (The use of “cannibalize” to denote dismemberment for spare parts applies, by the way, only to machines. For living organisms, it refers to the eating of one’s own species. But heck, it sounds bad, doesn’t it?) We must assume that the creation of embryos for any other purpose than procreation is also prohibited by Catholic teaching. In fact, Pacholcyzk says, it is even more immoral to destroy an embryo that had not received an immortal soul (although we don’t, remember, know if anyone actually does this, because we don’t know when ensoulment happens) than to destroy an ensouled embryo – worse than murder! – “because the immortal soul is the principle by which that person could come to an eternal destiny with God in heaven”. That person? Yes, an embryo is always a person – or rather, “the privileged sanctuary of one meant to develop as a human person.”
But evidently, the majority of human embryos are not, as Pacholcyzk insists, “meant [by God, one assumes] to develop as a human person” – they don’t get beyond three months. Or has God really made such a hash of human procreation, so that all these embryos destined for personhood keep failing to attain it?
The corollary to all this must be that the Catholic Church disapproves of IVF too, since that generally involves the creation of embryos that are not given the opportunity to grow to personhood. And as the Catholic World Report reminded us in 2012, it does indeed:
“Catholic teaching prohibits in vitro fertilization, maintaining that a child has the right to be conceived in the marital embrace of his parents. Human sexuality has two components, the unitive and procreative; IVF separates these components and makes the procreative its only goal. Pope Paul VI said that there is an “inseparable connection, willed by God, and unable to be broken by man on his own initiative, between the two meanings of the conjugal act: the unitive meaning and the procreative meaning.”
“There are other issues involved. IVF makes the child a commodity produced in a laboratory, and makes doctors, technicians, and even business people part of the conception process. The sperm used is usually obtained by masturbation, which the Church teaches is immoral. The sperm or eggs used may not come from the couple desiring the child; because one of the spouses may be infertile, it may be necessary to use the sperm or eggs from an outsider.”
That phrase, making a child conceived through IVF “a commodity produced in a laboratory”, is one of the most obscene I have ever heard from the church in modern times. God’s love is infinite – but you, Louise Brown (and four million others), are just a commodity produced in a laboratory.
Of course, Catholic countries don’t tend to feel they can be quite this hardline with their citizens, and so they cook up some crude compromise, such as Italy insisting that all embryos created in IVF (a maximum of three) must be implanted. This flouts Catholic teaching, and also flouts the right of people using IVF to the best chance of making it work. Everyone loses.
Actually, there is a form of IVF that the Catholic church will sanction. It is called gamete intra-Fallopian transfer, or (cutely) GIFT. Here’s how I described it in my book Unnatural. The woman’s eggs are collected as in IVF and mixed with sperm in vitro. This mixture is then immediately transferred back to the woman’s Fallopian tubes, so that fertilization can occur inside the body. One claimed benefit of GIFT is that the embryo can begin its earliest development in ‘natural surroundings’ rather than in an ‘artificial environment’. It’s not clear that a developing embryo cares in the slightest about this distinction, and indeed GIFT both is more invasive than standard IVF and makes it impossible to select the embryo of best apparent quality from several prepared in vitro. But it’s OK with the church, provided that the sperm is collected using a condom (a perforated, leaky one, mind) in sexual intercourse and not by masturbation – because everything then seems to be happening in its ‘natural’ place, with just a momentary sleight-of-hand involving a Petri dish. This obsession with the ‘proper’ mechanics, notwithstanding the lengths that are necessary here to achieve it, speaks of a deeply strange attitude towards the relation between sex and procreation, not to mention the bizarre and, I should have thought, highly disrespectful notion of a God who watches as if with clipboard in hand (but ready to avert his eyes at the crucial point) to tick off each step when it happens as it ‘ought’.
Generally I want to find ways to respect what people believe. But the Catholic position on IVF is on a par, in its inhumanity, with its position on condom use. If I sound sarcastic about it, please don’t read that as flippancy. It is fury. If these folks could content themselves with expressing their prejudices as blind faith and dogma, I would find it more palatable than if they tried to justify them with idiotic attempts at rational argument. I’m told that “Father Tad... studied in Rome, where he did advanced studies in theology and in bioethics.” I don’t find a shred of ethical reasoning in his comments on embryo research. It is unreason of the most retrograde kind.
But as I discovered while reviewing Henry Greely’s book The End of Sex, Father Tadeusz Pacholcyzk – who has a doctorate in neuroscience from Yale and writes for the National Catholic Bioethics Center in Philadelphia – has at least cleared up one thing for me. Whether or not embryos have a soul should, he says, have no bearing on our judgement about the rights and wrongs of using human embryo tissue for research into stem cells, or presumably for research into anything else. He clarifies that Catholic tradition has no unanimous verdict or tradition on the precise moment of ensoulment. However, Saint Augustine, rarely consulted for his knowledge of embryology, “seemed to shift his opinion back and forth during his lifetime between immediate and delayed ensoulment”. No wonder; it’s a tough question. Much, much tougher, indeed, than Augustine could ever have imagined, because of course we can’t expect him to have known that only about 12% of fertilized eggs in vivo will develop beyond three months of pregnancy. We had best assume, then, that ensoulment is delayed until some time after that, for otherwise heaven will be overwhelmingly filled with souls of embryos less than three months old. I don’t think any of the Christian Fathers ever imagined that heaven should be as odd a place as that.
The point, Pacholcyzk says, is irrelevant in any case, because a human embryo at any stage is destined for a soul “and should not be cannibalized for stem cell extraction”. (The use of “cannibalize” to denote dismemberment for spare parts applies, by the way, only to machines. For living organisms, it refers to the eating of one’s own species. But heck, it sounds bad, doesn’t it?) We must assume that the creation of embryos for any other purpose than procreation is also prohibited by Catholic teaching. In fact, Pacholcyzk says, it is even more immoral to destroy an embryo that had not received an immortal soul (although we don’t, remember, know if anyone actually does this, because we don’t know when ensoulment happens) than to destroy an ensouled embryo – worse than murder! – “because the immortal soul is the principle by which that person could come to an eternal destiny with God in heaven”. That person? Yes, an embryo is always a person – or rather, “the privileged sanctuary of one meant to develop as a human person.”
But evidently, the majority of human embryos are not, as Pacholcyzk insists, “meant [by God, one assumes] to develop as a human person” – they don’t get beyond three months. Or has God really made such a hash of human procreation, so that all these embryos destined for personhood keep failing to attain it?
The corollary to all this must be that the Catholic Church disapproves of IVF too, since that generally involves the creation of embryos that are not given the opportunity to grow to personhood. And as the Catholic World Report reminded us in 2012, it does indeed:
“Catholic teaching prohibits in vitro fertilization, maintaining that a child has the right to be conceived in the marital embrace of his parents. Human sexuality has two components, the unitive and procreative; IVF separates these components and makes the procreative its only goal. Pope Paul VI said that there is an “inseparable connection, willed by God, and unable to be broken by man on his own initiative, between the two meanings of the conjugal act: the unitive meaning and the procreative meaning.”
“There are other issues involved. IVF makes the child a commodity produced in a laboratory, and makes doctors, technicians, and even business people part of the conception process. The sperm used is usually obtained by masturbation, which the Church teaches is immoral. The sperm or eggs used may not come from the couple desiring the child; because one of the spouses may be infertile, it may be necessary to use the sperm or eggs from an outsider.”
That phrase, making a child conceived through IVF “a commodity produced in a laboratory”, is one of the most obscene I have ever heard from the church in modern times. God’s love is infinite – but you, Louise Brown (and four million others), are just a commodity produced in a laboratory.
Of course, Catholic countries don’t tend to feel they can be quite this hardline with their citizens, and so they cook up some crude compromise, such as Italy insisting that all embryos created in IVF (a maximum of three) must be implanted. This flouts Catholic teaching, and also flouts the right of people using IVF to the best chance of making it work. Everyone loses.
Actually, there is a form of IVF that the Catholic church will sanction. It is called gamete intra-Fallopian transfer, or (cutely) GIFT. Here’s how I described it in my book Unnatural. The woman’s eggs are collected as in IVF and mixed with sperm in vitro. This mixture is then immediately transferred back to the woman’s Fallopian tubes, so that fertilization can occur inside the body. One claimed benefit of GIFT is that the embryo can begin its earliest development in ‘natural surroundings’ rather than in an ‘artificial environment’. It’s not clear that a developing embryo cares in the slightest about this distinction, and indeed GIFT both is more invasive than standard IVF and makes it impossible to select the embryo of best apparent quality from several prepared in vitro. But it’s OK with the church, provided that the sperm is collected using a condom (a perforated, leaky one, mind) in sexual intercourse and not by masturbation – because everything then seems to be happening in its ‘natural’ place, with just a momentary sleight-of-hand involving a Petri dish. This obsession with the ‘proper’ mechanics, notwithstanding the lengths that are necessary here to achieve it, speaks of a deeply strange attitude towards the relation between sex and procreation, not to mention the bizarre and, I should have thought, highly disrespectful notion of a God who watches as if with clipboard in hand (but ready to avert his eyes at the crucial point) to tick off each step when it happens as it ‘ought’.
Generally I want to find ways to respect what people believe. But the Catholic position on IVF is on a par, in its inhumanity, with its position on condom use. If I sound sarcastic about it, please don’t read that as flippancy. It is fury. If these folks could content themselves with expressing their prejudices as blind faith and dogma, I would find it more palatable than if they tried to justify them with idiotic attempts at rational argument. I’m told that “Father Tad... studied in Rome, where he did advanced studies in theology and in bioethics.” I don’t find a shred of ethical reasoning in his comments on embryo research. It is unreason of the most retrograde kind.
Wednesday, March 23, 2016
On the attack
One of the easiest ways to bring humour to music is with timbre. It’s cheap (literally) but still funny to play Led Zeppelin’s “Whole Lotta Love” or Richard Strauss’s “Also Sprach Zarathustra” on kazoo, as the Temple City Kazoo Orchestra did in the 1970s. Most things played on kazoo are funny. It just has a comical timbre.
Such performances inadvertently make a serious point about timbre, which is that it can matter more than the notes. This is overlooked when music is considered as notes on paper. Yet musicologists have largely neglected it, for the simple reason that we don’t really know what it is. One definition amounts to a negative: if two sound signals differ while being identical in pitch and loudness, the difference is down to timbre.
One feature of timbre is the spectrum of pitches in a note: the amplitudes of the various overtones. These are quite different, for example, for a trumpet and a violin both the same note. But our sense of timbre depends also on how this spectrum, and the overall volume, changes over time, particularly in the initial “attack” period of the first few fractions of a second. These are acoustic properties, though, and it might be more relevant to ask what are the perceptual qualities by which we distinguish timbre. Some music psychologists claim that these are things like “brightness” and attack, others argue that we interpret timbre in terms of the physical processes we imagine causing the sound: blowing, plucking, striking and so on. It’s significant too that we often talk of the “colour” of the sound.
Arnold Schoenberg thought it should be possible to write music based on changes of timbre rather than pitch. It’s because we don’t know enough about how the brain organizes timbre that this notion didn’t really work. All the same, Schoenberg and his pupils created a style called Klangfarbenmelodie (sound colour melody) in which melodies were parceled out between instruments of different timbre, producing a mesmeric, shimmering effect. Anton Webern’s arrangement of a part of Bach “The Musical Offering” is the most renowned example.
There’s one thing for sure: timbre is central to our appreciation of music, and if we relegate it below more readily definable qualities like pitch and rhythm then we miss out on a huge part of what conditions our emotional response. It would be fair to say that critical opinion on the music of heavy-metal band Motörhead, led by the late bass guitarist Lemmy Kilmister, was divided. But if ever there was a music defined by timbre, this was it.
Such performances inadvertently make a serious point about timbre, which is that it can matter more than the notes. This is overlooked when music is considered as notes on paper. Yet musicologists have largely neglected it, for the simple reason that we don’t really know what it is. One definition amounts to a negative: if two sound signals differ while being identical in pitch and loudness, the difference is down to timbre.
One feature of timbre is the spectrum of pitches in a note: the amplitudes of the various overtones. These are quite different, for example, for a trumpet and a violin both the same note. But our sense of timbre depends also on how this spectrum, and the overall volume, changes over time, particularly in the initial “attack” period of the first few fractions of a second. These are acoustic properties, though, and it might be more relevant to ask what are the perceptual qualities by which we distinguish timbre. Some music psychologists claim that these are things like “brightness” and attack, others argue that we interpret timbre in terms of the physical processes we imagine causing the sound: blowing, plucking, striking and so on. It’s significant too that we often talk of the “colour” of the sound.
Arnold Schoenberg thought it should be possible to write music based on changes of timbre rather than pitch. It’s because we don’t know enough about how the brain organizes timbre that this notion didn’t really work. All the same, Schoenberg and his pupils created a style called Klangfarbenmelodie (sound colour melody) in which melodies were parceled out between instruments of different timbre, producing a mesmeric, shimmering effect. Anton Webern’s arrangement of a part of Bach “The Musical Offering” is the most renowned example.
There’s one thing for sure: timbre is central to our appreciation of music, and if we relegate it below more readily definable qualities like pitch and rhythm then we miss out on a huge part of what conditions our emotional response. It would be fair to say that critical opinion on the music of heavy-metal band Motörhead, led by the late bass guitarist Lemmy Kilmister, was divided. But if ever there was a music defined by timbre, this was it.
Thursday, March 17, 2016
The Roman melting pot
Here's my column for the March issue of Nature Materials.
_________________________________________________________
Recycling of materials is generally good for the planet, but it makes life hard for archaeologists. Analysis of ancient materials, for example by studying element or isotope compositions, can provide clues about the provenance of the raw materials and thus about the trade routes and economies of past cultures. But that business becomes complex, even indecipherable, if materials were reused and perhaps reprocessed in piecemeal fashion.
This, however, does seem to have been the way of the world. Extracting metals from ores and minerals from quarries and mines, and making glass and ceramics, were labour-intensive and often costly affairs, so that a great deal of the materials inventory was repurposed. Besides, the knowledge was sometimes lacking to make a particular material from scratch in situ. The glorious cobalt-blue glass in the windows of medieval French churches and cathedrals is often rich in sodium, characteristic of glass from the Mediterranean region. It was probably made from shards imported from the south using techniques that the northern Europeans didn’t possess, and perhaps dating back to Roman or Byzantine times. The twelfth-century monk Theophilus records that the French collected such glass and remelted it to make their windows [1].
In that instance, composition does say something about provenance. But if glass was recycled en masse, the chemical signature of its origin may get scrambled. It’s not surprising that such reuse was very common, for making glass from scratch was hugely burdensome: by one estimate, 100 kg of wood was needed to produce the ash for making 2 kg of glass, and collecting it took a whole day [2].
Just how extensively glass was recycled in large batches in Roman times is made clear in a new study by Jackson and Paynter [3]. Their analysis of glass fragments from a Roman site in York, England, shows that a lot of it came out of “a great big melting pot”: a jumble of recycled items melted together. The fragments can be broadly divided into classes differentiated by their antimony and manganese compositions. Both of these metals were typically added purposely during the Roman glass-making process because they could remove the colour (typically a blue-green tint) imparted by the impurities, such as iron, in the sand or ash [4]. Manganese was known in medieval Europe as “glassmaker’s soap”.
It’s the difficulty of making it that meant colourless glass was highly prized – and so particularly likely to be recycled. The results of Jackson and Paynter confirm how common this was. The largest category of glass samples that they analysed – around 40 percent of the total – contained high levels of both Sb and Mn, implying that glass rendered colourless by either additive would be separated from the rest and then recycled by melting.
But most of those samples aren’t colourless. That’s because remelting tends to incorporate other impurities, such as aluminium, titanium and iron, from the crucibles, furnaces or blowing irons. The recycled glass may then end up as tinted and undistinguished as that made with only low amounts of Mn. As a result, while it is derived from once highly prized, colourless glass reserved for fine tableware, this high Sb-Mn glass becomes devalued and used for mundane, material-intensive items such as windows and bottles. Eventually it just disappears into the melting pot.
1. Theophilus, On Divers Arts, transl. Hawthorne, J. G. & Smith, C. S. (Dover, New York, 1979).
2. Smedley, J. W., Jackson, C. M. & Booth, C. A., in Ceramics and Civilisation Vol. 8, eds McCray, P. & Kingery, W. D. (American Ceramic Society, 1998).
3. Jackson, C. M. & Paynter, S., Archaeometry 58, 68-95 (2016). [here]
4. Jackson, C. M., Archaeometry 47, 763-780 (2005).
_________________________________________________________
Recycling of materials is generally good for the planet, but it makes life hard for archaeologists. Analysis of ancient materials, for example by studying element or isotope compositions, can provide clues about the provenance of the raw materials and thus about the trade routes and economies of past cultures. But that business becomes complex, even indecipherable, if materials were reused and perhaps reprocessed in piecemeal fashion.
This, however, does seem to have been the way of the world. Extracting metals from ores and minerals from quarries and mines, and making glass and ceramics, were labour-intensive and often costly affairs, so that a great deal of the materials inventory was repurposed. Besides, the knowledge was sometimes lacking to make a particular material from scratch in situ. The glorious cobalt-blue glass in the windows of medieval French churches and cathedrals is often rich in sodium, characteristic of glass from the Mediterranean region. It was probably made from shards imported from the south using techniques that the northern Europeans didn’t possess, and perhaps dating back to Roman or Byzantine times. The twelfth-century monk Theophilus records that the French collected such glass and remelted it to make their windows [1].
In that instance, composition does say something about provenance. But if glass was recycled en masse, the chemical signature of its origin may get scrambled. It’s not surprising that such reuse was very common, for making glass from scratch was hugely burdensome: by one estimate, 100 kg of wood was needed to produce the ash for making 2 kg of glass, and collecting it took a whole day [2].
Just how extensively glass was recycled in large batches in Roman times is made clear in a new study by Jackson and Paynter [3]. Their analysis of glass fragments from a Roman site in York, England, shows that a lot of it came out of “a great big melting pot”: a jumble of recycled items melted together. The fragments can be broadly divided into classes differentiated by their antimony and manganese compositions. Both of these metals were typically added purposely during the Roman glass-making process because they could remove the colour (typically a blue-green tint) imparted by the impurities, such as iron, in the sand or ash [4]. Manganese was known in medieval Europe as “glassmaker’s soap”.
It’s the difficulty of making it that meant colourless glass was highly prized – and so particularly likely to be recycled. The results of Jackson and Paynter confirm how common this was. The largest category of glass samples that they analysed – around 40 percent of the total – contained high levels of both Sb and Mn, implying that glass rendered colourless by either additive would be separated from the rest and then recycled by melting.
But most of those samples aren’t colourless. That’s because remelting tends to incorporate other impurities, such as aluminium, titanium and iron, from the crucibles, furnaces or blowing irons. The recycled glass may then end up as tinted and undistinguished as that made with only low amounts of Mn. As a result, while it is derived from once highly prized, colourless glass reserved for fine tableware, this high Sb-Mn glass becomes devalued and used for mundane, material-intensive items such as windows and bottles. Eventually it just disappears into the melting pot.
1. Theophilus, On Divers Arts, transl. Hawthorne, J. G. & Smith, C. S. (Dover, New York, 1979).
2. Smedley, J. W., Jackson, C. M. & Booth, C. A., in Ceramics and Civilisation Vol. 8, eds McCray, P. & Kingery, W. D. (American Ceramic Society, 1998).
3. Jackson, C. M. & Paynter, S., Archaeometry 58, 68-95 (2016). [here]
4. Jackson, C. M., Archaeometry 47, 763-780 (2005).
Tuesday, March 01, 2016
Many worlds or many words?
I’ve been rereading Max Tegmark’s 1997 paper on the Many Worlds Interpretation of quantum mechanics, written in response to an informal poll taken that year at a quantum workshop. There, the MWI was the second most popular interpretation adduced by the attendees, after the Copenhagen Interpretation (which is here undefined). What, Tegmark asks, can account for the robust, even increasing, popularity of the MWI even after it has been so heavily criticized?
He gives various possible reasons, among them the idea that the emerging understanding of decoherence in the 1970s and 1980s removed the apparently serious objection “why don’t we perceive superpositions then?” Perhaps that’s true. Tegmark also says that enough experimental evidence had accumulated by then that quantum mechanics really is weird (quantum nonlocality, molecular superpositions etc) that maybe experimentalists (apparently a more skeptical bunch than theorists) were concluding, “hell, why not?” Again, perhaps so. Perhaps they really did think that “weirdness” here justified weirdness “there”. Perhaps they had become more ready to embrace quantum explanations of homeopathy and telepathy too.
But honestly, some of the stuff here. It’s delightful to see Tegmark actually write down for once the wave vector for an observer, since I’ve always wondered what that looked like. This particular observer makes a measurement on the spin state of a silver atom, and is happy with an up result but unhappy with a down result. In the former case, her state looks like this: |☺>. The latter case? Oh, you got there before me: |☹>. These two states are then combined as tensor products with the corresponding spin states. These equations are identified by numbers, rather as you do when you’re doing science.
Well, but what then of the objection that the very notion of probability is problematic when one is dealing with the MWI, given that everything that can happen does happen with certainty? This issue has been much debated, and certainly it is subtle. Subtler, I think, than the resolution Tegmark proposes. Let’s suppose, he says, that the observer is sleeping in bed when the spin measurement is made, and is placed in one or other of two identical rooms depending on the outcome. Yes, I can see you asking in what sense she is then an observer, and invoking Wigner’s friend and so on, but stay with me. You could at least imagine some apparatus designed to do this, right? So then she wakes up and wonders which room she is in. And she can then meaningfully calculate the probabilities – 50% for each. And, says Tegmark, these probabilities “could have been computed in advance of the experiment, used as gambling odds, etc., before the orthodox linguist would allow us to call them probabilities.”
Did you spot the flaw? She went to sleep – perhaps having realized that she’d have a 50% chance of waking up in either room – and then when she woke up she could find out which. But hang on – she? The “she” who went to sleep is not the “she” who woke up in one of the rooms. According to this view of the MWI, that first she is a superposition of the two shes who woke up. All that first she can say is that with 100% certainty, two future shes will occupy both rooms. At that point, the “probability” that “she” will wake up in room A or room B is a meaningless concept. “She”, or some other observer, could still place a bet on it, though, right, knowing that there will be one outcome or the other? Not really – rational betters would know that it makes no difference, if the MWI holds true. They’ll win and lose either way, with certainty. I wonder if Max, who I think truly does believe the MWI, would place a bet?
The point, I think, is that a linguist would be less bothered by the definition of “probability” here than by the definition of the observer. Posing the issue this way involves the usual refusal to admit that we lack any coherent way to relate the experiences of an individual before a quantum event (on which their life history is contingent) to the whole notion of that “same” individual afterwards. Still, we have the maths: |☺> + |☹> (pardon me for not normalizing) becomes |☺> and |☹> afterwards. And in Tegmark’s universe, it’s the maths that counts.
Oh, and I didn’t even ask what happens when the probability of the spin measurements is not 50:50 but 70:30. Another day, perhaps.
He gives various possible reasons, among them the idea that the emerging understanding of decoherence in the 1970s and 1980s removed the apparently serious objection “why don’t we perceive superpositions then?” Perhaps that’s true. Tegmark also says that enough experimental evidence had accumulated by then that quantum mechanics really is weird (quantum nonlocality, molecular superpositions etc) that maybe experimentalists (apparently a more skeptical bunch than theorists) were concluding, “hell, why not?” Again, perhaps so. Perhaps they really did think that “weirdness” here justified weirdness “there”. Perhaps they had become more ready to embrace quantum explanations of homeopathy and telepathy too.
But honestly, some of the stuff here. It’s delightful to see Tegmark actually write down for once the wave vector for an observer, since I’ve always wondered what that looked like. This particular observer makes a measurement on the spin state of a silver atom, and is happy with an up result but unhappy with a down result. In the former case, her state looks like this: |☺>. The latter case? Oh, you got there before me: |☹>. These two states are then combined as tensor products with the corresponding spin states. These equations are identified by numbers, rather as you do when you’re doing science.
Well, but what then of the objection that the very notion of probability is problematic when one is dealing with the MWI, given that everything that can happen does happen with certainty? This issue has been much debated, and certainly it is subtle. Subtler, I think, than the resolution Tegmark proposes. Let’s suppose, he says, that the observer is sleeping in bed when the spin measurement is made, and is placed in one or other of two identical rooms depending on the outcome. Yes, I can see you asking in what sense she is then an observer, and invoking Wigner’s friend and so on, but stay with me. You could at least imagine some apparatus designed to do this, right? So then she wakes up and wonders which room she is in. And she can then meaningfully calculate the probabilities – 50% for each. And, says Tegmark, these probabilities “could have been computed in advance of the experiment, used as gambling odds, etc., before the orthodox linguist would allow us to call them probabilities.”
Did you spot the flaw? She went to sleep – perhaps having realized that she’d have a 50% chance of waking up in either room – and then when she woke up she could find out which. But hang on – she? The “she” who went to sleep is not the “she” who woke up in one of the rooms. According to this view of the MWI, that first she is a superposition of the two shes who woke up. All that first she can say is that with 100% certainty, two future shes will occupy both rooms. At that point, the “probability” that “she” will wake up in room A or room B is a meaningless concept. “She”, or some other observer, could still place a bet on it, though, right, knowing that there will be one outcome or the other? Not really – rational betters would know that it makes no difference, if the MWI holds true. They’ll win and lose either way, with certainty. I wonder if Max, who I think truly does believe the MWI, would place a bet?
The point, I think, is that a linguist would be less bothered by the definition of “probability” here than by the definition of the observer. Posing the issue this way involves the usual refusal to admit that we lack any coherent way to relate the experiences of an individual before a quantum event (on which their life history is contingent) to the whole notion of that “same” individual afterwards. Still, we have the maths: |☺> + |☹> (pardon me for not normalizing) becomes |☺> and |☹> afterwards. And in Tegmark’s universe, it’s the maths that counts.
Oh, and I didn’t even ask what happens when the probability of the spin measurements is not 50:50 but 70:30. Another day, perhaps.
Friday, February 19, 2016
Manipulated by music
Here's my music psychology column from the latest issue of Sapere magazine.
______________________________________________
Does Alex, the ultra-violent delinquent in Anthony Burgess’ novel A Clockwork Orange, find something in Beethoven that matches his psychopathic tendencies? Does Beethoven perhaps even incite them? We’re left to guess. It seems more than mere coincidence however, that 16 years after Stanley Kubrick’s notorious movie of the novel, musicologist Susan McClary argued that Beethoven’s Ninth Symphony, one of Alex’s favourites, articulates a rapist’s rage.
That suggestion drew much criticism, even derision. But behind it seems to lie the suspicion that music can influence behaviour, for better or worse. It’s an ancient idea. Aristotle felt that the wrong kind of music can lead a person astray, while the right kind cultivates good citizenship. Such convictions meant that music was strictly regulated in Athens and Sparta. The Greeks organized their music in terms of modes – a little like our major and minor scales – and Plato insists that the Dorian mode is the one to induce bravery and resolve. Armies have long marched to war to the sounds of martial music, whether it’s the skirling of a Scottish bagpipe or Wagner’s “Ride of the Valkyries” blasting from the attack helicopters in Apocalypse Now.
That’s just one arena in which music is thought to manipulate mood. Ever since efficiency became the mantra of the modern workplace, employers have hoped that music will boost workers’ productivity. There’s a great deal of wishful thinking and shoddy science in this field, but some serious study too. The stereotype is of factories piping music to workers engaged in robotic routines, but in fact much of the interest is in using music to boost creativity. One study in 2012 found that workers in a computer software company solved problems faster and had better ideas when allowed to listen to music of their choice: a sign that positive mood makes for better work, rather than an indication of specific links between the type of music and productivity. The effects were small, though, and almost non-existent for expert workers.
Retailers have a strong interest in this stuff. Can music make people buy more? I’m afraid so. It’s been shown that certain musical genres enhance our receptiveness to – and what we’ll pay for – certain products. We’ll pay more for mundane products like toothbrushes and light bulbs when we hear country music, and more for products connected to “social identity” (jewellery, pin badges) when listening to classical music. But sellers beware: get the musical choice wrong, and it’s worse than no music at all.
______________________________________________
Does Alex, the ultra-violent delinquent in Anthony Burgess’ novel A Clockwork Orange, find something in Beethoven that matches his psychopathic tendencies? Does Beethoven perhaps even incite them? We’re left to guess. It seems more than mere coincidence however, that 16 years after Stanley Kubrick’s notorious movie of the novel, musicologist Susan McClary argued that Beethoven’s Ninth Symphony, one of Alex’s favourites, articulates a rapist’s rage.
That suggestion drew much criticism, even derision. But behind it seems to lie the suspicion that music can influence behaviour, for better or worse. It’s an ancient idea. Aristotle felt that the wrong kind of music can lead a person astray, while the right kind cultivates good citizenship. Such convictions meant that music was strictly regulated in Athens and Sparta. The Greeks organized their music in terms of modes – a little like our major and minor scales – and Plato insists that the Dorian mode is the one to induce bravery and resolve. Armies have long marched to war to the sounds of martial music, whether it’s the skirling of a Scottish bagpipe or Wagner’s “Ride of the Valkyries” blasting from the attack helicopters in Apocalypse Now.
That’s just one arena in which music is thought to manipulate mood. Ever since efficiency became the mantra of the modern workplace, employers have hoped that music will boost workers’ productivity. There’s a great deal of wishful thinking and shoddy science in this field, but some serious study too. The stereotype is of factories piping music to workers engaged in robotic routines, but in fact much of the interest is in using music to boost creativity. One study in 2012 found that workers in a computer software company solved problems faster and had better ideas when allowed to listen to music of their choice: a sign that positive mood makes for better work, rather than an indication of specific links between the type of music and productivity. The effects were small, though, and almost non-existent for expert workers.
Retailers have a strong interest in this stuff. Can music make people buy more? I’m afraid so. It’s been shown that certain musical genres enhance our receptiveness to – and what we’ll pay for – certain products. We’ll pay more for mundane products like toothbrushes and light bulbs when we hear country music, and more for products connected to “social identity” (jewellery, pin badges) when listening to classical music. But sellers beware: get the musical choice wrong, and it’s worse than no music at all.
Friday, February 12, 2016
On being "harsh" to Babylonia
Never read the comments, they say, and indeed it’s often a depressing experience. But it can be instructive too. I’m a little astonished, but better informed, by the comments below my piece for the Atlantic on Babylonian astronomy. It had honestly never occurred to me that merely by suggesting we not call the Babylonian astronomers scientists I would be deemed to be dissing them. From what I’ve seen, this historians will not have anticipated his misconception either.
It speaks volumes, though, about our cultural preconceptions. The idea seems to be that if you deny someone is doing science then you’re saying they are ignorant fools dabbling in a load of superstition. Oh crikey – how did the public perception of the history of science ever come to this? What have we done to land us here? Who is to blame? It seems that all those scientists cherry-picking from the past to hand out medals for getting things “right” really have captured the conversation, if the popular conception is that if you don’t get a pat on the head for being a “good scientist” then you fail the test.
Actually this really is a bit depressing. I’m not sure even where to start. Maybe just with this: when we say that we are not going to mine the past for congruence with the present, we are not dismissing that past as worthless ignorance. On the contrary, it means that we are taking it seriously. (And that, incidentally, is why modern “astrology” seems to me not to be perpetuating but in fact to be undermining its tradition. To pretend that astrology is a serious business today is, even if unintentionally, to do an injustice to its historical context.) So let me just say it again: Babylonian astronomy was not an “imperfect science” but a self-contained intellectual framework woven into the rest of their culture.
It speaks volumes, though, about our cultural preconceptions. The idea seems to be that if you deny someone is doing science then you’re saying they are ignorant fools dabbling in a load of superstition. Oh crikey – how did the public perception of the history of science ever come to this? What have we done to land us here? Who is to blame? It seems that all those scientists cherry-picking from the past to hand out medals for getting things “right” really have captured the conversation, if the popular conception is that if you don’t get a pat on the head for being a “good scientist” then you fail the test.
Actually this really is a bit depressing. I’m not sure even where to start. Maybe just with this: when we say that we are not going to mine the past for congruence with the present, we are not dismissing that past as worthless ignorance. On the contrary, it means that we are taking it seriously. (And that, incidentally, is why modern “astrology” seems to me not to be perpetuating but in fact to be undermining its tradition. To pretend that astrology is a serious business today is, even if unintentionally, to do an injustice to its historical context.) So let me just say it again: Babylonian astronomy was not an “imperfect science” but a self-contained intellectual framework woven into the rest of their culture.
Friday, January 29, 2016
What is selfish DNA?
Richard Dawkins’ The Selfish Gene was a landmark book in many ways: the first to lay out for a general audience the gene-centred view of evolution, but also one of the first to re-invigorate (arguably since the 1920s) science popularization as a part of the cultural conversation – and to show how beautifully written it should aspire to be. Dawkins might be divisive today for a variety of reasons, but science popularizers owe him a huge debt.
That’s why it is good and proper to have The Selfish Gene celebrated in Matt Ridley’s nice article in Nature. You can tell that I’m preparing to land a punch, can’t you?
Well, sort of. You see, I can’t help but be frustrated at how Matt turns one of the most problematic aspects of the book into a virtue. He suggests that Dawkins’ viewpoint was the inspiration for the discussions of selfish genes presented in Nature in 1980 by Orgel and Crick and by Doolittle and Sapienza. And it is true that The Selfish Gene is the first citation in both papers.
But both cite the book as one of the most recent discussions of the issue. As Orgel and Crick say, “The idea is not new. We have not attempted to trace it back to its root.” So it is not at all clear that, as Matt says, “a throwaway remark by Dawkins led to an entirely new theory in genomics”.
The problem is not simply one of quibbling about priority, however. Matt points out that this “throwaway remark” concerns the “apparently surplus DNA” – in the hugely problematic later coinage, junk DNA – that populates the genome, and which Dawkins suggested is merely parasitic. Yes indeed, and this is what those two later Nature papers discuss – as Orgel and Crick put it, DNA that “makes no specific contribution to the phenotype”.
But is this what The Selfish Gene is about? Absolutely not, and that’s why Dawkins’ remark was throwaway. His contention was that all genes should be regarded as “selfish”. Orgel, Crick, Doolittle and Sapienza are specifically talking about DNA that is produced and sustained by non-phenotypic selection. This, they say, is what we might regard as truly selfish DNA. Now, one can argue about the word “selfish” even in that context – it perhaps only makes sense if this DNA becomes detrimental to the survival of the organism. But the implication is that the phenotypic DNA is then not selfish, and that the term should be reserved for parasitic DNA. That makes good sense – and it is precisely these waters that Dawkins’ title muddied.
I can’t resist also asking what Matt means by saying that “genes that cause birds and bees to breed survive at the expense of other genes”. (“No other explanation makes sense…”) It seems to me more meaningful to say “genes that cause birds and bees to breed survive while helping other genes to survive.” I don’t exactly mean here to allude to the semantic selfish/cooperative debate (although there are good reasons to have it), but rather, it seems to me that Matt’s statement only makes sense if we replace “genes” with “alleles”. This is not pedantry. Genes do not, in general, compete with each other – at least, that is not the basis of the neodarwinian modern synthesis. Although one might find examples where specific genes do propagate at the expense of others, in general it is surely different variants of the same gene that compete with each other. And when a new allele proves to be more successful, other genes come along for the ride. To fail to make this distinction (which of course Matt recognizes) seems to me to propagate a very common misconception in evolutionary genetics, which is that genes are little pseudo-organisms all competing with one another. That isn’t a helpful or accurate way to present the picture.
Matt understands all this far better than I do. So I am quite prepared for him to tell me I have something wrong here.
That’s why it is good and proper to have The Selfish Gene celebrated in Matt Ridley’s nice article in Nature. You can tell that I’m preparing to land a punch, can’t you?
Well, sort of. You see, I can’t help but be frustrated at how Matt turns one of the most problematic aspects of the book into a virtue. He suggests that Dawkins’ viewpoint was the inspiration for the discussions of selfish genes presented in Nature in 1980 by Orgel and Crick and by Doolittle and Sapienza. And it is true that The Selfish Gene is the first citation in both papers.
But both cite the book as one of the most recent discussions of the issue. As Orgel and Crick say, “The idea is not new. We have not attempted to trace it back to its root.” So it is not at all clear that, as Matt says, “a throwaway remark by Dawkins led to an entirely new theory in genomics”.
The problem is not simply one of quibbling about priority, however. Matt points out that this “throwaway remark” concerns the “apparently surplus DNA” – in the hugely problematic later coinage, junk DNA – that populates the genome, and which Dawkins suggested is merely parasitic. Yes indeed, and this is what those two later Nature papers discuss – as Orgel and Crick put it, DNA that “makes no specific contribution to the phenotype”.
But is this what The Selfish Gene is about? Absolutely not, and that’s why Dawkins’ remark was throwaway. His contention was that all genes should be regarded as “selfish”. Orgel, Crick, Doolittle and Sapienza are specifically talking about DNA that is produced and sustained by non-phenotypic selection. This, they say, is what we might regard as truly selfish DNA. Now, one can argue about the word “selfish” even in that context – it perhaps only makes sense if this DNA becomes detrimental to the survival of the organism. But the implication is that the phenotypic DNA is then not selfish, and that the term should be reserved for parasitic DNA. That makes good sense – and it is precisely these waters that Dawkins’ title muddied.
I can’t resist also asking what Matt means by saying that “genes that cause birds and bees to breed survive at the expense of other genes”. (“No other explanation makes sense…”) It seems to me more meaningful to say “genes that cause birds and bees to breed survive while helping other genes to survive.” I don’t exactly mean here to allude to the semantic selfish/cooperative debate (although there are good reasons to have it), but rather, it seems to me that Matt’s statement only makes sense if we replace “genes” with “alleles”. This is not pedantry. Genes do not, in general, compete with each other – at least, that is not the basis of the neodarwinian modern synthesis. Although one might find examples where specific genes do propagate at the expense of others, in general it is surely different variants of the same gene that compete with each other. And when a new allele proves to be more successful, other genes come along for the ride. To fail to make this distinction (which of course Matt recognizes) seems to me to propagate a very common misconception in evolutionary genetics, which is that genes are little pseudo-organisms all competing with one another. That isn’t a helpful or accurate way to present the picture.
Matt understands all this far better than I do. So I am quite prepared for him to tell me I have something wrong here.
Friday, January 15, 2016
More on the beauty question
Here’s my review of Frank Wilczek’s book A Beautiful Question: Finding Nature’s Deep Design, which appeared in Physics World last year.
__________________________________________________________________
There aren’t many books on which you will find admiring blurbs by both Lawrence Krauss and Deepak Chopra, but this is one. You can see why. Wilczek writes in a freewheeling, almost poetic way, while retaining a penetrating and rigorous vision of what he wants to say about physics, science and the world.
His opening question – “Is the world a work of art?” – sets the tone: at the same time lyrical and baffling. Wilczek’s answer, as you might guess from the title, is “Yes, and it’s a beautiful one.” He reaches this conclusion after surveying the central role that symmetry plays in modern physics, from the shapes of atomic orbitals to the structure of quantum chromodynamics. He makes one of the most compelling cases I have seen for why symmetry can be considered a guiding principle worth heeding in efforts to push back the frontiers of physical theory. The latest prospect of doing that – of expanding fundamental physics beyond the Standard Model, which Wilczek prefers to call the Core Theory – comes from the principle of supersymmetry, which promises to unify bosons (“force particles”, with integer spin) and fermions (“substance particles”, with half-integer spin). This idea looms large on the agenda of the Large Hadron Collider now that it has returned to operation after an upgrade. Thanks to Wilczek, I now have a better sense of why the theory not only might be true but ought to be.
All the same, if this were a regular popular science book then it would be considered something of a mess. Like poetry, Wilczek’s prose is often highly concentrated thought, and he doesn’t always bother to unravel it or even to define his terms. Even with the glossary, I’m not sure how much the uninitiated reader will get from statements such as “Color gluons are the avatars of gauge symmetry 3.0.” What seem to be more straightforward concepts, such as light perception by the eye, become reconfigured into shapes that, while fitting into Wilczek’s intellectual framework, take time to decrypt: “When we perceive a color, we see a symbol of change, not anything that changes.”
Wilczek’s suggestion that, when the going gets tough, we read the text like poetry rather than hoping to understand all it says, seems optimistic. But these challenges aren’t, I think, exactly defects of the book, because this is not a regular science book. Like Stephen Hawking's A Brief History of Time, it is instead the unique vision of a brilliant mind (with that added advantage that it doesn’t pretend otherwise). For every baffling passage there are other moments when Wilczek explains something in a way that no one else has, or perhaps could, so that you come away with a fresh perspective on something that you thought you understood already. Never again will I be frustrated by pop-science suggestions that Einstein simply decided to posit the constancy of the speed of light: of course he didn’t, and Wilczek cuts straight to the physics of the matter. Put simply, he sees things differently, and that’s the true and compelling reason to read the book.
For the fact is that this book is not a work of explanation but, like Plato’s Timaeus, an extended argument – indeed, what you might call a gentle polemic. It wants to steer us towards Wilczek’s own answer to his initial question. And so, quietly and soberly, he marshals facts that fit his case and soft-pedals ones that don’t. That’s fine – it is what polemics do – so long as we recognize what’s happening. For example, in his discussion of Pythagorean musical consonance he gives us a simple (albeit speculative) physical mechanism for why we prefer harmonies with simple frequency ratios while all but ignoring the fact that we plainly don’t: unless you’ve heard music played in tunings other than equal temperament, you’ll never have heard the interval of a Pythagorean fifth. And the discussion of Chinese yin and yang glosses over the fact that it not an aesthetic idea but a philosophical one: beauty is never, to my knowledge, mentioned by Chinese philosophers in this context.
Such goal-directed argument is most apparent in Wilczek’s discussion of beauty itself, for which the closest thing he gives to a definition is “symmetry and economy of means”. But neither of these features plays a key role either in most art or in most theories of aesthetics. Immanuel Kant, who made one of the most searching enquiries into the nature of beauty, argued that there is something repugnant in too much order and regularity. Even Francis Bacon asserted that “There is no excellent beauty that hath not some strangeness in the proportion”.
Kant’s careful distinction between real beauty and the intellectual satisfaction of perceiving an idea is precisely what physicists ignore when, like Lewis Carroll’s Humpty Dumpty, they make the word mean just what they want it to mean. Wilczek at least admits that not all types of beauty are included in his picture; but the physicists’ usual conception of beauty is Platonic in the extreme and barely if at all relevant to the arts. For Plato it was precisely art’s lack of symmetry (and thus intelligibility) that denied it access to real beauty: art was just too messy to be beautiful. It seems clear, and important, that many physicists do feel a kind of transcendent joy in the symmetries of nature’s laws. But if they really want to talk about it in terms of beauty, they should acknowledge that there is an intellectual heritage to that notion that they will have to confront.
__________________________________________________________________
There aren’t many books on which you will find admiring blurbs by both Lawrence Krauss and Deepak Chopra, but this is one. You can see why. Wilczek writes in a freewheeling, almost poetic way, while retaining a penetrating and rigorous vision of what he wants to say about physics, science and the world.
His opening question – “Is the world a work of art?” – sets the tone: at the same time lyrical and baffling. Wilczek’s answer, as you might guess from the title, is “Yes, and it’s a beautiful one.” He reaches this conclusion after surveying the central role that symmetry plays in modern physics, from the shapes of atomic orbitals to the structure of quantum chromodynamics. He makes one of the most compelling cases I have seen for why symmetry can be considered a guiding principle worth heeding in efforts to push back the frontiers of physical theory. The latest prospect of doing that – of expanding fundamental physics beyond the Standard Model, which Wilczek prefers to call the Core Theory – comes from the principle of supersymmetry, which promises to unify bosons (“force particles”, with integer spin) and fermions (“substance particles”, with half-integer spin). This idea looms large on the agenda of the Large Hadron Collider now that it has returned to operation after an upgrade. Thanks to Wilczek, I now have a better sense of why the theory not only might be true but ought to be.
All the same, if this were a regular popular science book then it would be considered something of a mess. Like poetry, Wilczek’s prose is often highly concentrated thought, and he doesn’t always bother to unravel it or even to define his terms. Even with the glossary, I’m not sure how much the uninitiated reader will get from statements such as “Color gluons are the avatars of gauge symmetry 3.0.” What seem to be more straightforward concepts, such as light perception by the eye, become reconfigured into shapes that, while fitting into Wilczek’s intellectual framework, take time to decrypt: “When we perceive a color, we see a symbol of change, not anything that changes.”
Wilczek’s suggestion that, when the going gets tough, we read the text like poetry rather than hoping to understand all it says, seems optimistic. But these challenges aren’t, I think, exactly defects of the book, because this is not a regular science book. Like Stephen Hawking's A Brief History of Time, it is instead the unique vision of a brilliant mind (with that added advantage that it doesn’t pretend otherwise). For every baffling passage there are other moments when Wilczek explains something in a way that no one else has, or perhaps could, so that you come away with a fresh perspective on something that you thought you understood already. Never again will I be frustrated by pop-science suggestions that Einstein simply decided to posit the constancy of the speed of light: of course he didn’t, and Wilczek cuts straight to the physics of the matter. Put simply, he sees things differently, and that’s the true and compelling reason to read the book.
For the fact is that this book is not a work of explanation but, like Plato’s Timaeus, an extended argument – indeed, what you might call a gentle polemic. It wants to steer us towards Wilczek’s own answer to his initial question. And so, quietly and soberly, he marshals facts that fit his case and soft-pedals ones that don’t. That’s fine – it is what polemics do – so long as we recognize what’s happening. For example, in his discussion of Pythagorean musical consonance he gives us a simple (albeit speculative) physical mechanism for why we prefer harmonies with simple frequency ratios while all but ignoring the fact that we plainly don’t: unless you’ve heard music played in tunings other than equal temperament, you’ll never have heard the interval of a Pythagorean fifth. And the discussion of Chinese yin and yang glosses over the fact that it not an aesthetic idea but a philosophical one: beauty is never, to my knowledge, mentioned by Chinese philosophers in this context.
Such goal-directed argument is most apparent in Wilczek’s discussion of beauty itself, for which the closest thing he gives to a definition is “symmetry and economy of means”. But neither of these features plays a key role either in most art or in most theories of aesthetics. Immanuel Kant, who made one of the most searching enquiries into the nature of beauty, argued that there is something repugnant in too much order and regularity. Even Francis Bacon asserted that “There is no excellent beauty that hath not some strangeness in the proportion”.
Kant’s careful distinction between real beauty and the intellectual satisfaction of perceiving an idea is precisely what physicists ignore when, like Lewis Carroll’s Humpty Dumpty, they make the word mean just what they want it to mean. Wilczek at least admits that not all types of beauty are included in his picture; but the physicists’ usual conception of beauty is Platonic in the extreme and barely if at all relevant to the arts. For Plato it was precisely art’s lack of symmetry (and thus intelligibility) that denied it access to real beauty: art was just too messy to be beautiful. It seems clear, and important, that many physicists do feel a kind of transcendent joy in the symmetries of nature’s laws. But if they really want to talk about it in terms of beauty, they should acknowledge that there is an intellectual heritage to that notion that they will have to confront.
Thursday, January 14, 2016
What's in a name?
Shawn Burdette’s blog post on element-naming has some nice things in it, but I wonder if he appreciates that the entire discussion around the names of the four new elements is itself largely a bit of fun? Sure, I can imagine that there are some people signing the petitions for lemmium and octarine thinking that the Japanese or Russian teams are going to say “Hey, several of those Brits want us to name this element after a heavy-rock musician we’ve never heard of/some magical colour in a series of books by a fantasy writer we’ve never heard of – well, that seems like a good idea to us.” Who knows, perhaps they are hoping one of the scientists will pipe up with “Oh yeah, I remember Silver Machine from my student days in Kyoto/St Petersburg. Let’s do it, freaks!” But really, do most of the signatories think this is anything but a fun way to celebrate a couple of recently deceased people whose work they liked?
The point is that most people aren’t suggesting names because they have the slightest hope, or even wish, that they’ll be taken seriously, or that the researchers need a bit of help. Rather, this is an unusually rich opportunity to both make a few funny/wistful/ridiculous suggestions and to have a considered discussion about how these names come about. If we aren’t allowed to do that unless we are “in the element discovery business”, it’s a sadder world. Certainly that’s why I said in my Nature piece that levium is a name I’d love to see, not one that I think ought to be adopted. It was a personal view (the clue was in the article category), not an absurd attempt to “impose my ideas for element names on the discoverers”. And if it is sanctimonious to wish for element names to be inclusive rather than proprietorial, so be it.
Which brings us to nationalism. Let me confess right away that I am not entirely consistent on this, because I can’t help feeling a soft spot for the Curies’ polonium. Poland had a pretty crap time of it in the 19th and early 20th century, and besides, Marie seemed to have regarded this as a kind of homage to a distant homeland rather than a boast. No, my case is not airtight. But as Shawn says, germanium and francium did seem more aggressively flag-waving (I’ve never got to the bottom of the accusations of egotism behind Lecoq’s gallium.)
And it surely doesn’t stop there: americium smells of the Cold War, although in fairness this doesn’t appear to refer solely to the United States. If berkelium, californium, dubnium, hassium and livermorium aren’t necessarily expressions of patriotism, they do seem to veer towards bragging. Shawn asks: well, why not? It is damned hard to do this work, why shouldn’t the teams get the credit, even if it seems a little vain? I’m not convinced. They definitely deserve credit, of course, but there are other avenues for that. My biggest concern, though, is that this triumphalism is a reflection of the competitiveness of the whole business, which seems unfortunate and tiresome. When there is a dispute over priority and then the “winner” goes and names the element after themselves (in effect), it is like sticking your tongue out at the “losers”: it’s us, not you. The disputatious nature of element-making during the Cold War years is notorious, and even if things are somewhat more collaborative now, there are still arguments.
It’s precisely because the work is so hard that priority can be so contentious: it is a matter of fine judgement whether a claim is convincing or not. The Russian team insists that their claim for having seen element 113 in 2003 should count as the first, and that the Japanese group came second the next year. Their complaint that the Japanese result isn’t going to be easily reproduced by anyone, and that in any case the leader of that team Kosuke Morita learnt his chops at Dubna in the first place, seems particularly ungracious. All the same, can we be so sure that the Russians don’t have a case? I trust the IUPAC experts, but it seems unlikely that there are completely cut-and-dry arguments. Imagine if the situation was reversed: if the Japanese had toiled hard to get a suggestive decay signature, their first shot at an element discovered in the Far East, only to be dismissed by IUPAC in favour of those Russians again, who go and slap “moscovium” on it. Would we feel that was a good name that enhanced the justice of the situation?
This, of course, is science as normal – different people arrive at much the same result at much the same time, and priority is a murky issue. But this is precisely why a winner-takes-all approach to naming adds to the distorted view of discovery that such emphasis on coming first produces. I fully understand that for some individual scientists, priority can matter hugely to career prospects, even though it damned well shouldn’t. But to big, substantially funded projects like this? I don’t think so. Even if element-naming wasn’t solipsistic, there would surely still be a strong desire to claim priority. But do we have to make it worse?
The point is that most people aren’t suggesting names because they have the slightest hope, or even wish, that they’ll be taken seriously, or that the researchers need a bit of help. Rather, this is an unusually rich opportunity to both make a few funny/wistful/ridiculous suggestions and to have a considered discussion about how these names come about. If we aren’t allowed to do that unless we are “in the element discovery business”, it’s a sadder world. Certainly that’s why I said in my Nature piece that levium is a name I’d love to see, not one that I think ought to be adopted. It was a personal view (the clue was in the article category), not an absurd attempt to “impose my ideas for element names on the discoverers”. And if it is sanctimonious to wish for element names to be inclusive rather than proprietorial, so be it.
Which brings us to nationalism. Let me confess right away that I am not entirely consistent on this, because I can’t help feeling a soft spot for the Curies’ polonium. Poland had a pretty crap time of it in the 19th and early 20th century, and besides, Marie seemed to have regarded this as a kind of homage to a distant homeland rather than a boast. No, my case is not airtight. But as Shawn says, germanium and francium did seem more aggressively flag-waving (I’ve never got to the bottom of the accusations of egotism behind Lecoq’s gallium.)
And it surely doesn’t stop there: americium smells of the Cold War, although in fairness this doesn’t appear to refer solely to the United States. If berkelium, californium, dubnium, hassium and livermorium aren’t necessarily expressions of patriotism, they do seem to veer towards bragging. Shawn asks: well, why not? It is damned hard to do this work, why shouldn’t the teams get the credit, even if it seems a little vain? I’m not convinced. They definitely deserve credit, of course, but there are other avenues for that. My biggest concern, though, is that this triumphalism is a reflection of the competitiveness of the whole business, which seems unfortunate and tiresome. When there is a dispute over priority and then the “winner” goes and names the element after themselves (in effect), it is like sticking your tongue out at the “losers”: it’s us, not you. The disputatious nature of element-making during the Cold War years is notorious, and even if things are somewhat more collaborative now, there are still arguments.
It’s precisely because the work is so hard that priority can be so contentious: it is a matter of fine judgement whether a claim is convincing or not. The Russian team insists that their claim for having seen element 113 in 2003 should count as the first, and that the Japanese group came second the next year. Their complaint that the Japanese result isn’t going to be easily reproduced by anyone, and that in any case the leader of that team Kosuke Morita learnt his chops at Dubna in the first place, seems particularly ungracious. All the same, can we be so sure that the Russians don’t have a case? I trust the IUPAC experts, but it seems unlikely that there are completely cut-and-dry arguments. Imagine if the situation was reversed: if the Japanese had toiled hard to get a suggestive decay signature, their first shot at an element discovered in the Far East, only to be dismissed by IUPAC in favour of those Russians again, who go and slap “moscovium” on it. Would we feel that was a good name that enhanced the justice of the situation?
This, of course, is science as normal – different people arrive at much the same result at much the same time, and priority is a murky issue. But this is precisely why a winner-takes-all approach to naming adds to the distorted view of discovery that such emphasis on coming first produces. I fully understand that for some individual scientists, priority can matter hugely to career prospects, even though it damned well shouldn’t. But to big, substantially funded projects like this? I don’t think so. Even if element-naming wasn’t solipsistic, there would surely still be a strong desire to claim priority. But do we have to make it worse?
Does music really need a new philosophy?
I always enjoy Roger Scruton’s writing on music, even when I disagree with him vehemently. That holds true for his piece on the role of philosophy in music. We should ignore the habitual bluster about the melodic and harmonic paucity of popular music, which Scruton seems insistent on analysing in a social vacuum as though it is beholden to the same compositional and aesthetic rules as Mozart; indeed, most of what Scruton writes about music totally ignores the fact that it is a cultural activity with many functions, not just an artifact to appreciate over a glass of fine wine. (I have visions of him challenging the idea that Bowie was a great musical artist because his songs had poor voice-leading.) And Scruton’s perpetual denigration of today’s callow youth, passively consuming processed musical pap under their hoodies, makes you wish he’d get to bloody well know a few young people instead of sneering at them from afar. Most of the kids I know are learning an instrument – not that this is an essential aspect of active engagement with music, but it obviously helps.
I’m not sure that Scruton’s article is really concerned so much with philosophy at all (there is a large body of work on this that he doesn’t touch on, and which is not obsessing about modernist ideas, such as Stephen Davies’ excellent 2005 book Themes in the Philosophy of Music). His emphasis is rather on systems and rules of composition. Still, I agree with him that Schoenberg’s twelve-tone method is pretty arbitrary, that Adorno wrote with priestly dogmatism, and that serialism systematically undermined the accumulated wisdom about making melodies coherent. However, just as Schoenberg didn’t realise why this was so, so Scruton has only the vaguest sense of why Western tonal music does have this property of auditory coherence. It’s depressing to hear yet another appeal to the “naturalness” of the Western diatonic scale (under which system of intonation, one wonders? Have you heard how weird the Pythagorean scale sounds to our ears now?). Not only is there no good evidence that the harmonies it creates are innately consonant (with the exception of the octave and perhaps the fifth), but Scruton’s appeal to the harmonic series ignores the fact that Schoenberg appealed to the very same source of justification – he just wanted to “emancipate” the higher harmonics. If Scruton showed more awareness of musical cultures whose harmonic norms depart widely from Western tonality (say, Croatian ganga or Indonesian gamelan), I think he’d be less inclined to assert its naturalness.
The existence of a tonic and of a hierarchy of note usage is indeed a feature of how much musical melody becomes intelligible and perceptually grouped, and also contributes to its tense of tension and release. The circle of fifths, modulation and voice-leading aren’t by any means essential in rich and complex music, but they can certainly be put to good use for coherence, variation and nuance in Western tonal music, once they become part of the learnt musical language. So if all this is ditched, then Scruton is quite right to assert that other “binding” structures are needed if one wants music that has an easily apprehended cognitive structure. (I have written about this in some detail, with specific focus on serialism and modernism here.)
But there are ways to achieve cognitive coherence within serialism, and Berg in particular was masterful in using rhythm, pitch relationships and other techniques to do so. (I don’t fully understand how he does it, but I suspect it was intuitive.) Without such things, Scruton rightly asserts that no “normal ear” (which is to say, no mind employing the mental grouping mechanisms we acquire for navigating an auditory landscape) can hold the music together. Yet if he showed any interest in the cognition of music, he’d be less sure that the traditional rules of the Western tonal style were the only means of achieving this.
Yet does music have to hold together in that way? We’re back to Scruton’s insistence on listening to all music with an ear attuned to Mozart. True, if we’re not going to do that then we have to learn a new way of listening, which is not easy when you’ve been immersed in the Western tonal tradition from birth (as most Westerners have). But might it not be worth trying? Personally, I’ve found that it is. Ligeti, for example, offers musical experiences based on texture or a kind of pointillist sonic painting. OK, you won’t go away humming the tunes, but I would be sad if that were always held up as the test of fulfilling music.
Beyond all this, the notion that all contemporary classical (whatever that means) music today is in thrall to serialism is of course absurd. These remarks might have been more pertinent 50 years ago, but now the diversity of styles is exhilarating and dizzying. Pierre Boulez is dead, Roger, and we can do what we like! (I don’t mean to knock Pierre, who seemed to loosen up somewhat in old age, but really he was a bit of a serialist snob in his time.)
What is the “philosophy” that Scruton wants to see in place of that of Adorno and the other champions of modernism? One, apparently, in which “true artists are not the antagonists of tradition but their [sic] latest advocates”. There speaks a dyed-in-the-wool conservative, of course, but I have some sympathy with the idea that innovators extend and transform tradition rather than sticking the boot into it. Even the Sex Pistols arguably did that (if the “tradition” includes MC5, Iggy and the Stooges and garage rock generally). But I wouldn’t expect Scruton to approve of that example.
Thanks to Ángel Lamuño for bringing Scruton’s article to my attention.
I’m not sure that Scruton’s article is really concerned so much with philosophy at all (there is a large body of work on this that he doesn’t touch on, and which is not obsessing about modernist ideas, such as Stephen Davies’ excellent 2005 book Themes in the Philosophy of Music). His emphasis is rather on systems and rules of composition. Still, I agree with him that Schoenberg’s twelve-tone method is pretty arbitrary, that Adorno wrote with priestly dogmatism, and that serialism systematically undermined the accumulated wisdom about making melodies coherent. However, just as Schoenberg didn’t realise why this was so, so Scruton has only the vaguest sense of why Western tonal music does have this property of auditory coherence. It’s depressing to hear yet another appeal to the “naturalness” of the Western diatonic scale (under which system of intonation, one wonders? Have you heard how weird the Pythagorean scale sounds to our ears now?). Not only is there no good evidence that the harmonies it creates are innately consonant (with the exception of the octave and perhaps the fifth), but Scruton’s appeal to the harmonic series ignores the fact that Schoenberg appealed to the very same source of justification – he just wanted to “emancipate” the higher harmonics. If Scruton showed more awareness of musical cultures whose harmonic norms depart widely from Western tonality (say, Croatian ganga or Indonesian gamelan), I think he’d be less inclined to assert its naturalness.
The existence of a tonic and of a hierarchy of note usage is indeed a feature of how much musical melody becomes intelligible and perceptually grouped, and also contributes to its tense of tension and release. The circle of fifths, modulation and voice-leading aren’t by any means essential in rich and complex music, but they can certainly be put to good use for coherence, variation and nuance in Western tonal music, once they become part of the learnt musical language. So if all this is ditched, then Scruton is quite right to assert that other “binding” structures are needed if one wants music that has an easily apprehended cognitive structure. (I have written about this in some detail, with specific focus on serialism and modernism here.)
But there are ways to achieve cognitive coherence within serialism, and Berg in particular was masterful in using rhythm, pitch relationships and other techniques to do so. (I don’t fully understand how he does it, but I suspect it was intuitive.) Without such things, Scruton rightly asserts that no “normal ear” (which is to say, no mind employing the mental grouping mechanisms we acquire for navigating an auditory landscape) can hold the music together. Yet if he showed any interest in the cognition of music, he’d be less sure that the traditional rules of the Western tonal style were the only means of achieving this.
Yet does music have to hold together in that way? We’re back to Scruton’s insistence on listening to all music with an ear attuned to Mozart. True, if we’re not going to do that then we have to learn a new way of listening, which is not easy when you’ve been immersed in the Western tonal tradition from birth (as most Westerners have). But might it not be worth trying? Personally, I’ve found that it is. Ligeti, for example, offers musical experiences based on texture or a kind of pointillist sonic painting. OK, you won’t go away humming the tunes, but I would be sad if that were always held up as the test of fulfilling music.
Beyond all this, the notion that all contemporary classical (whatever that means) music today is in thrall to serialism is of course absurd. These remarks might have been more pertinent 50 years ago, but now the diversity of styles is exhilarating and dizzying. Pierre Boulez is dead, Roger, and we can do what we like! (I don’t mean to knock Pierre, who seemed to loosen up somewhat in old age, but really he was a bit of a serialist snob in his time.)
What is the “philosophy” that Scruton wants to see in place of that of Adorno and the other champions of modernism? One, apparently, in which “true artists are not the antagonists of tradition but their [sic] latest advocates”. There speaks a dyed-in-the-wool conservative, of course, but I have some sympathy with the idea that innovators extend and transform tradition rather than sticking the boot into it. Even the Sex Pistols arguably did that (if the “tradition” includes MC5, Iggy and the Stooges and garage rock generally). But I wouldn’t expect Scruton to approve of that example.
Thanks to Ángel Lamuño for bringing Scruton’s article to my attention.
Tuesday, January 12, 2016
The place of the periodic table
I can fully understand that Eric Scerri, who has done so much to explain, popularize and clarify the periodic table, would object to my suggestion in a Nature article that “chemists rarely need to refer to it” and that it “holds more interest and glamour for the public than it does for the working chemist”. These statements are too general; I should say “many” (most?) chemists. There are some who surely do use it, and a rather small group of others – Eric among them, of course – who expend a lot of time and thought on the right way to structure it. Those latter questions are interesting and valuable, and I regret that Eric seems to have been offended by an apparent implication (not intended) that they are not.
If I exaggerate, it’s to make a point, which is that it is not terribly good for chemistry if it is seen as being all about the periodic table – and that is the impression I think non-scientists often get. Not only does it obscure what most chemists do, but it leads to the idea that the quantum explanation of the periodic table means that chemistry is “just physics”, or that, now we know all the elements (except ones we make ourselves), “pure” chemistry is pretty much over as an academic discipline (if you don’t believe me, see here). And chemistry is not alone in the risks associated with giving too much emphasis to its organizational schemas, as I say. One could easily get the impression, from Higgs- and LHC-mania (which is fine in itself), that all physicists want to do is find new particles. Yet most physicists never need to consult the tabulation of the standard model, even mentally. Nor do most biologists need to know the genetic code (though of course they learn it anyway). This is not a question of whether these lists and tables and classifications are significant – of course they are. It is about guiding public perception away from the notion that this is what the respective disciplines are all about.
The periodic table is not a “mere list”. It is far richer than that. But chemistry as a whole is much, much richer still, because it is primarily about making things with, and not simply categorizing, its building blocks. I am not convinced that this is widely understood (Tom Lehrer’s song, for all that it’s fun, suggests as much), and I worry that at least some of the excitement about the new elements amounts to the perception that “hey, we’ve completed the list!” That’s the challenge that needs to be faced.
If I exaggerate, it’s to make a point, which is that it is not terribly good for chemistry if it is seen as being all about the periodic table – and that is the impression I think non-scientists often get. Not only does it obscure what most chemists do, but it leads to the idea that the quantum explanation of the periodic table means that chemistry is “just physics”, or that, now we know all the elements (except ones we make ourselves), “pure” chemistry is pretty much over as an academic discipline (if you don’t believe me, see here). And chemistry is not alone in the risks associated with giving too much emphasis to its organizational schemas, as I say. One could easily get the impression, from Higgs- and LHC-mania (which is fine in itself), that all physicists want to do is find new particles. Yet most physicists never need to consult the tabulation of the standard model, even mentally. Nor do most biologists need to know the genetic code (though of course they learn it anyway). This is not a question of whether these lists and tables and classifications are significant – of course they are. It is about guiding public perception away from the notion that this is what the respective disciplines are all about.
The periodic table is not a “mere list”. It is far richer than that. But chemistry as a whole is much, much richer still, because it is primarily about making things with, and not simply categorizing, its building blocks. I am not convinced that this is widely understood (Tom Lehrer’s song, for all that it’s fun, suggests as much), and I worry that at least some of the excitement about the new elements amounts to the perception that “hey, we’ve completed the list!” That’s the challenge that needs to be faced.
Sunday, January 10, 2016
The myth of the Enlightenment (again)
To cite Kant in defence of the “Enlightement values” of freedom of speech, democratic representation, universal equality and so forth, as Nick Cohen does here, is simply to invite the response that Kant rejected democracy and displayed the conventional misogyny, racism and class-based snobberies of his times. In other words, it is to incite an empty argument in which we hold Kant anachronistically to account for the prejudices that just about every other educated and privileged male European of his age shared.
Which is why it drives me up the bloody wall that folks like Cohen are still banging on about “Enlightenment values” – by which they generally mean some carefully selected values advanced by certain Enlightenment figures that we (some of us – me and Nick alike) would like to see upheld today, such as freedom to think for ourselves. The sad irony is that Kent seems to think this is a different category of statement than speaking of equally meaningless (because utterly polysemous) “Christian values”.
Cohen’s criticisms of the pope in his article are entirely justified. Trying to support them by appealing to some fictitious Enlightenment does him no favours at all. He calls “people who call themselves liberals” (that would be me, then) “thoughtless prigs” who probably don’t know what the Enlightenment was. Isn’t it odd, then, that folk who talk today about Enlightenment values are usually arguing in favour of a secular, classless, “rationalistic” democracy? Because, to state the bleedin’ obvious, there were no secular classless democracies in eighteenth century Europe.
And the heroes of the Enlightenment had no intention of introducing them. Take that other Enlightenment icon Voltaire. Like Kant, Voltaire had some attractive ideas about religious tolerance and separation of church and state. But he was representative of the philosophes in opposing any idea that reason should become a universal basis for thought. It was grand for the ruling classes, but far too dangerous to advocate for the lower orders, who needed to be kept in ignorance for the sake of the social order. Here’s what he said about that: “the rabble… are not worthy of being enlightened and are apt for every yoke”. Voltaire has been said to be a deist, which means that he believed in a God whose existence can be deduced by reason rather than revelation, and who made the world according to rational principles. But he insisted that ideas like this should be confined to the better classes. The message of the church should be kept simple for the lower orders, so that they didn’t get confused. Voltaire said that complex ideas such as deism are suited only “among the well-bred, among those who wish to think.”
The Enlightenment was not strongly secular in any case. Atheism was very rare, and condemned by almost all philosophers as a danger to social stability. Rousseau calls for religious tolerance – except for atheists, who should be banished from the state because their lack of fear of divine punishment meant that they couldn’t be trusted to obey the laws.
The idea that the Enlightenment was some great Age of Reason is now rejected by most historians. So why do intelligent people like Nick Cohen still invoke this trope today whenever they fear that irrational and dogmatic forces are threatening to undermine science and society? I suspect it has something to do with the allure of the Golden Age: things were all rosy once, but now the barbarians are dragging us back to that other mythical period in history, the “Dark Ages”. Sadly, history is never so simple.
Stand up for principles of tolerance, compassion, equality, reasoned decision-making, and free speech, by all means. But don’t try to conscript bad history to your cause. What people today call “Enlightenment values” are like universal human rights: we might like them and think they are worth defending (I do), but that doesn’t alter the fact that they are a modern invention.
Which is why it drives me up the bloody wall that folks like Cohen are still banging on about “Enlightenment values” – by which they generally mean some carefully selected values advanced by certain Enlightenment figures that we (some of us – me and Nick alike) would like to see upheld today, such as freedom to think for ourselves. The sad irony is that Kent seems to think this is a different category of statement than speaking of equally meaningless (because utterly polysemous) “Christian values”.
Cohen’s criticisms of the pope in his article are entirely justified. Trying to support them by appealing to some fictitious Enlightenment does him no favours at all. He calls “people who call themselves liberals” (that would be me, then) “thoughtless prigs” who probably don’t know what the Enlightenment was. Isn’t it odd, then, that folk who talk today about Enlightenment values are usually arguing in favour of a secular, classless, “rationalistic” democracy? Because, to state the bleedin’ obvious, there were no secular classless democracies in eighteenth century Europe.
And the heroes of the Enlightenment had no intention of introducing them. Take that other Enlightenment icon Voltaire. Like Kant, Voltaire had some attractive ideas about religious tolerance and separation of church and state. But he was representative of the philosophes in opposing any idea that reason should become a universal basis for thought. It was grand for the ruling classes, but far too dangerous to advocate for the lower orders, who needed to be kept in ignorance for the sake of the social order. Here’s what he said about that: “the rabble… are not worthy of being enlightened and are apt for every yoke”. Voltaire has been said to be a deist, which means that he believed in a God whose existence can be deduced by reason rather than revelation, and who made the world according to rational principles. But he insisted that ideas like this should be confined to the better classes. The message of the church should be kept simple for the lower orders, so that they didn’t get confused. Voltaire said that complex ideas such as deism are suited only “among the well-bred, among those who wish to think.”
The Enlightenment was not strongly secular in any case. Atheism was very rare, and condemned by almost all philosophers as a danger to social stability. Rousseau calls for religious tolerance – except for atheists, who should be banished from the state because their lack of fear of divine punishment meant that they couldn’t be trusted to obey the laws.
The idea that the Enlightenment was some great Age of Reason is now rejected by most historians. So why do intelligent people like Nick Cohen still invoke this trope today whenever they fear that irrational and dogmatic forces are threatening to undermine science and society? I suspect it has something to do with the allure of the Golden Age: things were all rosy once, but now the barbarians are dragging us back to that other mythical period in history, the “Dark Ages”. Sadly, history is never so simple.
Stand up for principles of tolerance, compassion, equality, reasoned decision-making, and free speech, by all means. But don’t try to conscript bad history to your cause. What people today call “Enlightenment values” are like universal human rights: we might like them and think they are worth defending (I do), but that doesn’t alter the fact that they are a modern invention.
Friday, December 18, 2015
Talking about talking about history
David Wootton has sent me some responses to the accusations made by some of the reviewers of his book The Invention of Science, including me in Nature and Steven Poole in New Statesman, that he somewhat over-eggs the “science wars”/relativism arguments. Some other reviewers have suggested that these polemical sections of the book are referring to an academic turf war that doesn’t need to be awarded so much space here. In her review in the Guardian, Lorraine Daston commented that this material is “unlikely to be of interest to readers who are not historians of science over the age of 50.” Well, I plead guilty to the second at least, and so perhaps it isn’t surprising that those chapters most certainly were of interest to me. I might not agree with all of David’s arguments in the book, but I was very happy to see them. It is a discussion that still needs to happen, not least because “histories of science” like that of Steven Weinberg’s To Explain the World are still being put out into the public arena.
For that reason too, I’m delighted to post David’s responses here. I don’t exactly disagree with anything he says; I think the issues are at least partly a matter of interpretation. For example, in my review I commented that Steven Shapin and Simon Schaffer’s influential Leviathan and the Air-Pump (1985) doesn’t to my eye offer the kind of “hard relativist” perspective that David seems to find in it. In my original draft of the book review, I also said the same about David’s comments on Simon Schaffer’s article on prisms:
“I see no reason to believe, for example, that Schaffer really questions Newton’s compound theory of white light in his 1989 essay on prisms and the experimentum crucis, but just that he doubts the persuasiveness of Newton’s own experimental evidence.”
David seemed to say that Simon’s comments even implied he had doubts about the modern theory of optics and additive mixing; I can’t find grounds for reaching that conclusion. In my conversations with Simon, I have never had the slightest impression that he doesn’t regard science as a system of thought that offers a progressively more reliable description of the world. If he thinks it is no truer than witchcraft, he hides it extraordinarily well.
As further evidence of S&S’s relativism, David quotes from Leviathan and the Air-Pump, which, he says, maintains that the success of experimental science depended on its proponents’ “political success ... in insinuating themselves into the activities of other institutions and other interest groups. He who has the most, and the most powerful, allies wins.” When I first read this (in preparing my book Curiosity), it never once occurred to me that S&S meant it as some kind of statement to the effect that we only think Boyle’s law is correct because Boyle was more politically astute than his opponents. I took it to mean that Boyle was able to gain rapid acceptance of his ideas because he was politically well situated (central to the Royal Society, for example) and canny with his rhetoric. It seemed to me that the reception of scientific ideas when they first appear surely is, both then and now, conditioned by social factors. It surely is the case that some such ideas, though they might indeed now be revealed as superior to the alternatives, were more quickly taken up at the time not just (or even) because they were more convincing or better supported by evidence but because of the way their advocates were able to corner the market or rewrite the discourse in their favour. Lavoisier’s “new chemistry” is the obvious example. Indeed, David recognizes that social aspects of scientific debate in his book, which is one of its many strengths. I certainly don’t think Simon would argue that scientific ideas might then stay fixed for hundreds of years simply because their initial proponents gained the upper hand in the cut and thrust of debate.
David says that Steven Shapin does betray an affiliation to extreme relativism, however – and he cites as evidence Shapin’s comment in his (unsurprisingly damning) review of the Weinberg book:
“Science remains almost unique in that respect. It’s modernity’s reality-defining enterprise, a pattern of proper knowledge and of right thinking, in the same way that—though Mr. Weinberg will hate the allusion—Christian religion once defined what the world was like and what proper knowledge should be.”
This is a complicated claim, and I would like to know more about what Shapin meant by it. Perhaps I will ask him. I can see why David might interpret it as a statement to the effect that the scientific theory of the origin of the universe is no more “true” than the account given in Genesis. And I think he is right to point out that Shapin should be alert to the possibility of that interpretation. But I think one can also interpret the remark as saying that we should be as wary of scientism – the idea that the only knowledge that counts as proper knowledge is scientific – as we should be of the doctrinaire Christianity that once pervaded Western thought, which was once the jury before which all ideas were to be scrutinized. Christian theology was certainly regarded at times as a superior arbiter to pre-scientific rationalism in efforts to understand the universe – for example in the 1277 Condemnation that pitched Aristotelian natural history against the Church). But just as Christianity was finally compelled to stay within the proper limits of its authority (in most parts of the civilized Christian world, if not perhaps Kansas), so should we make sure that science does so: it is the best method we have for understanding the physical world, but not the yardstick for all “proper knowledge”. I hope this is what Shapin means, but I confess that I cannot be sure.
The real problem here – and it is one that David rightly complains about – is not so much excessive relativism in the academic study of the history of science, but what he calls a conspiracy of silence within that discipline. It seems to have become taboo to say that scientific knowledge goes through a reliability filter that makes it rather dependable, predictive and amenable to improvement – even if you believe that to be the case. As a historian of science, David must be regularly faced with disapproving frowns and tuts if he wishes to express value judgements about scientific ideas, because this seems to have become bad form and now to be rather rigidly policed in some quarters.
I have experienced this myself, when a publisher’s reviewer of my book Invisible evidently felt it his/her duty to scour it for the slightest taint of presentism – and, when he/she decided it had been detected, to reel out what was obviously a pre-prepared little spiel to that effect. For example, I was sternly told that
“Hooke and Leeuwenhoek did not "in fact" see "single-celled organisms called protozoa". They also did not drive modern cars, neither did they long for a new iphone.”
This is of course just silly (not to say rather incoherent) academic Gotcha-style point-scoring. What I wrote was “It was Leeuwenhoek’s discoveries of invisibly small ‘animals’ – he was in fact seeing large bacteria and single-celled organisms called protozoa – in 1676…” Outrageous, huh?
Then I got some nonsense about "Great Men" histories because I had the temerity to mention that Pasteur and Koch did some important work on germ theory. The reviewer’s terror of making what his/her colleagues would regard as a disciplinary faux pas seems to be preventing him/her from being able to actually tell any history.
The situation in that case became clear enough when the reviewer finally complained that it was hard to judge my argument because what he/she needed was “a clear statement of the author's intent and theoretical position” – followed by “rewriting the whole text in such a way that the author clearly articulates his chosen positions throughout.” To which I’m afraid I replied: “What is my “theoretical position”? It’s in the text, not in some badge that I choose to display at the outset. The persistent misreading of the text to force it into one camp or another [and the cognitive dissonance evident when it doesn’t quite fit] seems to highlight a pretty serious problem with the academic approach, for all that I benefit from it shamelessly.”
So perhaps David will understand (I suspect he does already) that I have considerable sympathy with his predicament. I just wonder if his frustration (like mine) leaked out a little too much. I don’t know if he is right to say that “The [Oxford] faculty, as a group of professional historians, feels it must ward off anyone interested in studying science as a project that succeeds and makes progress, and at the same time encourage anyone who wants to study science as a purely social enterprise” – and if he is, that doesn’t seem terribly healthy. But the job advert he quotes doesn’t seem to me to deny the possibility of progress, but simply to point out that the primary job of the historian is not to sift the past for nuggets of the present.
Which of course brings me to Weinberg. He apparently wants to reshape the history of science, although his response to critics in the NYRB makes me more sympathetic to the sincerity, if not to the value, of his programme. I wonder if we might get a little clearer about the issues here by considering how one might wish to, say, write about medieval and early modern witchcraft. I wonder if what David sees as an unconscionable silence from historians on the veracity and validity of witchcraft is more a matter of historians thinking that, in the 21st century, one should not feel obliged to begin a paper or a book with a statement along the lines of
“I must point out that witchcraft is not a very effective way to understand the world, and if you wish to make a flying device, you will be far better advised to use the modern theory of fluid mechanics.”
On the other hand, if said author were to be quizzed along the lines of “But does witchcraft make broomsticks fly?”, it would be intellectually feeble, indeed derelict, to respond “That’s not the issue I am addressing, and I do not propose to comment on it.” David implies that this happens; I suspect he is right, though I do not know how often. There doesn’t seem to be anything sacrificed by saying instead something like: “Of course, witchcraft will not summon demons and make people fly. Now let me get on with talking about it.”
The Weinberg position, on the other hand, seems to be along the lines of “By all means study witchcraft as history, if you like, but as far as science is concerned we should make it absolutely clear that it was just superstitious nonsense that got in the way of true progress.” To which, of course, the historian might want to say “But Robert Boyle believed that demons exist and could be summoned!” The Weinbergian (I don’t want to put words into his own mouth) might respond, “Well Boyle wasn’t perfect and he believed some pretty daft things – like alchemical transmutation.”
And at that point I say “You really don’t give a toss what Robert Boyle thought, do you? You just want to mark his homework.” But I do give a toss, and not just because Boyle was an interesting thinker, or because I don’t have any illusion that we are smarter today than people were in the seventeenth century. I want to take seriously what Boyle thought and why, because it is a part of how ideas have developed, and because I don’t believe the history of science was a process of gradually shaking off delusions and misapprehensions and refining our rationality. It is much messier than that, now and always. If your starting position in assessing Boyle’s belief in demons and alchemy is that he was sometimes a bit gullible and deluded, then you are simply not going to get much of a grasp of what or how he thought. (Boyle was somewhat gullible when it came to alchemical charlatans, but his belief in transmutation wasn’t a part of that credulity.)
My own position is more along the lines of “It’s interesting that people once believed in witchcraft. I wonder what sustained that belief, and how it interacted with emerging ideas about science?” I am not being disingenuous if I say that I am inevitably a naïve reader of Shapin, Schaffer, Daston, Fara, and indeed David Wootton. But I find this same spirit in all of their books, and that’s what I appreciate in them.
Comments from David Wootton
A number of the reviews of The Invention of Science have expressed puzzlement that my book opens and closes with extensive historiographical, methodological, and philosophical discussions. Why not just leave all that stuff out? The charge is that I am refighting the Science Wars of the 1990s when everyone else has moved on. I under- stand why people would think this, but, with respect, I think they are wrong. Let’s break down the issues as follows:
1) Are relativists still confident that they speak for the history of science profession? Yes they are. See for example Steven Shapin’s breathtaking review of Steven Weinberg in the Wall Street Journal, where Shapin actually presents belief in science as being strictly comparable to belief in Christianity (http://goo.gl/qULelt) [1]. Or see Shapin’s and Schaffer’s introduction to the anniversary edition of Leviathan and the Air Pump (2011). Or see Peter Dear’s “Historiography of Not-So-Recent Science”, History of Science 50 (2012), 197-211 (“we are all post- modernists now”).
2) Are students still taught from relativist textbooks? Yes they are. The key text- books are Shapin’s Scientific Revolution (1996; now translated into seventeen languages); Peter Dear’s Revolutionizing the Sciences (2001, revised in 2009); John Henry’s The Scientific Revolution (1997, with later revisions). This may change – there is Principe’s Very Short Introduction (2011), for example – but it hasn’t changed yet.
3) Has the profession moved on? Rather than moving on, it has decided to pretend the Science Wars never happened, and as a consequence it is stuck in a rut, incapable of generating a new account of what was happening in science in the early modern period. To quote Lorraine Daston’s 2009 essay on the present state of the discipline (http://goo.gl/rMEAiy), what historians have produced is “a swarm of microhistories ... archivally based and narrated in exquisite detail.” These microhistories, as she herself acknowledges, do not enable one to put together a bigger picture. The resulting confusion is embodied, for example, in David Knight’s Voyaging in Strange Seas: the Great Revolution in Science (Yale, 2014).
4) Are the relativists more moderate than I maintain? Philip Ball thinks I and the authors of Leviathan and the Air Pump have more in common than I imagine. I doubt Shapin and Schaffer will think so, and I suggest Philip rereads p. 342 of that book, which maintains that the success of experimental science depended on its proponents’ “political success ... in insinuating themselves into the activities of other institutions and other interest groups. He who has the most, and the most powerful, allies wins.” In this sort of story the evidence counts for nothing – indeed, the strong programme insists that the evidence must count for nothing (and note the introduction of the strong programme’s key principle of symmetry on p. 5)[2].
5) Can you separate methodology and historiography from substantive history? It’s very difficult to do so, because your methodology and the previous history of your discipline shape the questions you ask and the answers you give. Thus relat- ivist historiography has privileged controversy studies (http://goo.gl/uVfxFF), and simply ignored cases where new scientific claims have been accepted without dispute. Indeed if the Duhem-Quine thesis were right there are always grounds for dispute when new evidence is presented. I don’t see how one can discuss the collapse of Ptolemaic astronomy in the years immediately after 1610 without acknowledging that this is an event which has been invisible to previous historians because they have been unwilling to acknowledge that an empirical fact (the phases of Venus) could be decisive in determining the fate of a well- established theory — in a case like this it is not the evidence that is new, but the questions that are being asked of it, and these are inseparable from issues of methodology and historiography [3].
6) The Economist thinks I have a disagreement with a few “callow” relativists. Odd that these insignificant people hold chairs in Harvard, Cambridge, Oxford, Edinburgh, Cornell. But there is a much bigger point here: a fundamental claim made by my opponents is that historians are committed, in principle, to treating bad and good knowledge identically. The historical profession tends to agree with them (see for example Gordon Wood’s NYRB essay on medicine in the American Revolution, http://goo.gl/ZoFuMu: “The problem is most historians are relativists”).
The consequences are apparent in the Cambridge History of Science, vol. 3, ed. Park and Daston (2006), which contains a twenty page chapter on “Coffee Houses and Print Shops” (as part of a two hundred page section on “Personae- and Sites of Natural Knowledge”) and others equally long on “Astrology” and “Magic” (Astrology gets twenty pages while Astronomy gets thirty), but, despite being 850 pages long, contains no extended discussion of Digges, Stevin, Gilbert, or Pascal, nothing on magnets, and only two pages on vacuum experiments [4].
It is also apparent in Oxford University’s recent (April 2015) advertisement for its Chair in the History of Science which stated: “The professor will share the faculty’s vision of the scope of the history of science, which is less focused on the history of scientific truth and more interested in reconstructing the practices of science, and the claims to science-based authority within given societies at given times” [5]. The Oxford Faculty of History does not declare its vision of the scope of the discipline when advertising its chair in, say, military history. But the history of science is different. The faculty, as a group of professional historians, feels it must ward off anyone interested in studying science as a project that succeeds and makes progress, and at the same time encourage anyone who wants to study science as a purely social enterprise. What interests them is not scientific knowledge but the authority claimed by “scientists” — be they alchemists or phrenologists. What’s at stake here is not just the history of science, but also the claim, made over and over again by historians, that the past must be studied solely in its own terms — an approach which may lead to understanding, but cannot lead to explanation. So historians of witchcraft report encounters with devils as if the devils were real — and never ask what’s really going on.
7) What is science? I was dismayed to discover that students in my own university were being taught (by someone with a new PhD in history of science from a prestigious institution) that there was no such thing as science in the seventeenth century. But this, after all, is what Henry’s textbook says, and Dear in his 2012 review essay confidently asserts: “specialist historians seem increasingly agreed that science as we now know it is an endeavour born of the nineteenth century.” On her university website one distinguished historian of science is described thus: “Paula Findlen teaches history of science before it was ‘science’ (which is, after all, a nineteenth-century word).” (http://web.stanford.edu/ dept/HPS/findlen.html, accessed 7 Dec 2015). How have we got to the point where it appears to make sense to claim that “science” is a nineteenth-century word? Because Newton, we are told, was not a scientist (which indeed is a nineteenth-century word) but a philosopher. Even if one charitably rephrases Findlen’s statement (or the statement made on her behalf) to read “‘science’ as we currently use the term is a nineteenth-century concept” it would be wrong unless, by a circular argument, one insists that earlier usages of the word can’t possibly have meant by science what we mean by science. The whole point of my book is to show that by the end of the seventeenth century “science” (as Dryden called it) really was science as we understand the term. To unpick the miscon- ception that there was no science in the seventeenth century you have to look at the history of words like “science” and “scientist” (noting, for example, the founding of the French Académie des Sciences in 1666), but also at an historiographical tradition which has insisted that what we think of as science is just a temporary and arbitrary social practice, like metaphysical poetry or Methodism, not an enduring and self-sustaining body of reliable knowledge.
8) What would have happened if I had left out the methodological and historiographical debates? I tried the alternative approach, of writing in layperson’s terms for commonsensical people, first. Just look at how my book Bad Medicine was treated by Steven Shapin, in the pages of the London Review of Books: http:/ /goo.gl/aA67fr! The book was a success in that lots of people read it and liked it, many of them doctors (see www.badmedicine.co.uk); but historians of medicine brushed it off. So this time I have felt obliged to address the core arguments which supposedly justify ignoring progress — the arguments that have bamboozled the profession for the last fifty years — in the hope of being taken a little more seriously, not by sensible people (who can’t understand why I don’t just cut to the chase), but by the professionals who think that the history of science is like cardiac surgery — not something “the laity” (Shapin’s peculiar term) can possible participate in, understand, or criticise, but something for the professionals alone. In trying to address this new clerisy I have evidently tried the patience of some of my more sensible, level-headed readers. That’s unfortunate and a matter of considerable regret: but if the way in which history of science is taught in the universities is to change, someone must take on the experts on their own ground, and someone must question the notion that the history of science ought not to concern itself with (amongst much else) the history of scientific truth. By all means skip the beginning and concluding chapters if you have no interest in how the history of science (and history more generally) is taught; but please read them carefully if you do.
Notes
[1] There is a paywall: to surmount it google “Why Scientists Shouldn’t Write History” and click on the first link. For a discussion see http://goo.gl/VYNVhX. I am grateful to Philip Ball for acknowledging that my book is very different in character from Weinberg’s, which saves me from having to stress the point.
[2] Patricia Fara thinks that social constructivism is “the idea that what people believe to be true is affected by their cultural context.” If that were the case then we would all be social constructivists and I really would be arguing with a straw person. But of course it isn’t, as I show over and over again in my book. It is, rather, the claim (made by her Cambridge colleague Andrew Cunningham) that science is “a human activity, wholly a human activity, and nothing but a human activity” — in other words that it is socially constituted, not merely socially influenced (the model for such an argument being, of course, Durkheim on religion). The consequence of this, constructivists rightly hold, is epistemological egalitarianism — any particular belief is to be regarded as being just as good as any other.
[3] Take for example William Donahue’s discussion of Galileo and the phases of Venus in Park and Daston, 585: “He argued... that this phenomenon was inconsistent with the Ptolemaic arrangement of the planets...” Galileo and his contemporaries understood perfectly well that Galileo had proved the Ptolemaic arrangements of the planets could not be right — the whole impact of Galileo’s discovery is lost by reducing it to a mere argument. Indeed Donahue does not acknowledge that it had any impact while I show the impact is measurable by counting editions of Sacrobosco.
[4] A colleague of mine unkindly calls this the Polo history: Polo Mints, to quote Wikipedia, “are a brand of mints whose defining feature is the hole in the middle.”
[5] The text is no longer on the Oxford University website, but can still be found, for example, at http://goo.gl/KOY05f (accessed 7 Dec 2015).
For that reason too, I’m delighted to post David’s responses here. I don’t exactly disagree with anything he says; I think the issues are at least partly a matter of interpretation. For example, in my review I commented that Steven Shapin and Simon Schaffer’s influential Leviathan and the Air-Pump (1985) doesn’t to my eye offer the kind of “hard relativist” perspective that David seems to find in it. In my original draft of the book review, I also said the same about David’s comments on Simon Schaffer’s article on prisms:
“I see no reason to believe, for example, that Schaffer really questions Newton’s compound theory of white light in his 1989 essay on prisms and the experimentum crucis, but just that he doubts the persuasiveness of Newton’s own experimental evidence.”
David seemed to say that Simon’s comments even implied he had doubts about the modern theory of optics and additive mixing; I can’t find grounds for reaching that conclusion. In my conversations with Simon, I have never had the slightest impression that he doesn’t regard science as a system of thought that offers a progressively more reliable description of the world. If he thinks it is no truer than witchcraft, he hides it extraordinarily well.
As further evidence of S&S’s relativism, David quotes from Leviathan and the Air-Pump, which, he says, maintains that the success of experimental science depended on its proponents’ “political success ... in insinuating themselves into the activities of other institutions and other interest groups. He who has the most, and the most powerful, allies wins.” When I first read this (in preparing my book Curiosity), it never once occurred to me that S&S meant it as some kind of statement to the effect that we only think Boyle’s law is correct because Boyle was more politically astute than his opponents. I took it to mean that Boyle was able to gain rapid acceptance of his ideas because he was politically well situated (central to the Royal Society, for example) and canny with his rhetoric. It seemed to me that the reception of scientific ideas when they first appear surely is, both then and now, conditioned by social factors. It surely is the case that some such ideas, though they might indeed now be revealed as superior to the alternatives, were more quickly taken up at the time not just (or even) because they were more convincing or better supported by evidence but because of the way their advocates were able to corner the market or rewrite the discourse in their favour. Lavoisier’s “new chemistry” is the obvious example. Indeed, David recognizes that social aspects of scientific debate in his book, which is one of its many strengths. I certainly don’t think Simon would argue that scientific ideas might then stay fixed for hundreds of years simply because their initial proponents gained the upper hand in the cut and thrust of debate.
David says that Steven Shapin does betray an affiliation to extreme relativism, however – and he cites as evidence Shapin’s comment in his (unsurprisingly damning) review of the Weinberg book:
“Science remains almost unique in that respect. It’s modernity’s reality-defining enterprise, a pattern of proper knowledge and of right thinking, in the same way that—though Mr. Weinberg will hate the allusion—Christian religion once defined what the world was like and what proper knowledge should be.”
This is a complicated claim, and I would like to know more about what Shapin meant by it. Perhaps I will ask him. I can see why David might interpret it as a statement to the effect that the scientific theory of the origin of the universe is no more “true” than the account given in Genesis. And I think he is right to point out that Shapin should be alert to the possibility of that interpretation. But I think one can also interpret the remark as saying that we should be as wary of scientism – the idea that the only knowledge that counts as proper knowledge is scientific – as we should be of the doctrinaire Christianity that once pervaded Western thought, which was once the jury before which all ideas were to be scrutinized. Christian theology was certainly regarded at times as a superior arbiter to pre-scientific rationalism in efforts to understand the universe – for example in the 1277 Condemnation that pitched Aristotelian natural history against the Church). But just as Christianity was finally compelled to stay within the proper limits of its authority (in most parts of the civilized Christian world, if not perhaps Kansas), so should we make sure that science does so: it is the best method we have for understanding the physical world, but not the yardstick for all “proper knowledge”. I hope this is what Shapin means, but I confess that I cannot be sure.
The real problem here – and it is one that David rightly complains about – is not so much excessive relativism in the academic study of the history of science, but what he calls a conspiracy of silence within that discipline. It seems to have become taboo to say that scientific knowledge goes through a reliability filter that makes it rather dependable, predictive and amenable to improvement – even if you believe that to be the case. As a historian of science, David must be regularly faced with disapproving frowns and tuts if he wishes to express value judgements about scientific ideas, because this seems to have become bad form and now to be rather rigidly policed in some quarters.
I have experienced this myself, when a publisher’s reviewer of my book Invisible evidently felt it his/her duty to scour it for the slightest taint of presentism – and, when he/she decided it had been detected, to reel out what was obviously a pre-prepared little spiel to that effect. For example, I was sternly told that
“Hooke and Leeuwenhoek did not "in fact" see "single-celled organisms called protozoa". They also did not drive modern cars, neither did they long for a new iphone.”
This is of course just silly (not to say rather incoherent) academic Gotcha-style point-scoring. What I wrote was “It was Leeuwenhoek’s discoveries of invisibly small ‘animals’ – he was in fact seeing large bacteria and single-celled organisms called protozoa – in 1676…” Outrageous, huh?
Then I got some nonsense about "Great Men" histories because I had the temerity to mention that Pasteur and Koch did some important work on germ theory. The reviewer’s terror of making what his/her colleagues would regard as a disciplinary faux pas seems to be preventing him/her from being able to actually tell any history.
The situation in that case became clear enough when the reviewer finally complained that it was hard to judge my argument because what he/she needed was “a clear statement of the author's intent and theoretical position” – followed by “rewriting the whole text in such a way that the author clearly articulates his chosen positions throughout.” To which I’m afraid I replied: “What is my “theoretical position”? It’s in the text, not in some badge that I choose to display at the outset. The persistent misreading of the text to force it into one camp or another [and the cognitive dissonance evident when it doesn’t quite fit] seems to highlight a pretty serious problem with the academic approach, for all that I benefit from it shamelessly.”
So perhaps David will understand (I suspect he does already) that I have considerable sympathy with his predicament. I just wonder if his frustration (like mine) leaked out a little too much. I don’t know if he is right to say that “The [Oxford] faculty, as a group of professional historians, feels it must ward off anyone interested in studying science as a project that succeeds and makes progress, and at the same time encourage anyone who wants to study science as a purely social enterprise” – and if he is, that doesn’t seem terribly healthy. But the job advert he quotes doesn’t seem to me to deny the possibility of progress, but simply to point out that the primary job of the historian is not to sift the past for nuggets of the present.
Which of course brings me to Weinberg. He apparently wants to reshape the history of science, although his response to critics in the NYRB makes me more sympathetic to the sincerity, if not to the value, of his programme. I wonder if we might get a little clearer about the issues here by considering how one might wish to, say, write about medieval and early modern witchcraft. I wonder if what David sees as an unconscionable silence from historians on the veracity and validity of witchcraft is more a matter of historians thinking that, in the 21st century, one should not feel obliged to begin a paper or a book with a statement along the lines of
“I must point out that witchcraft is not a very effective way to understand the world, and if you wish to make a flying device, you will be far better advised to use the modern theory of fluid mechanics.”
On the other hand, if said author were to be quizzed along the lines of “But does witchcraft make broomsticks fly?”, it would be intellectually feeble, indeed derelict, to respond “That’s not the issue I am addressing, and I do not propose to comment on it.” David implies that this happens; I suspect he is right, though I do not know how often. There doesn’t seem to be anything sacrificed by saying instead something like: “Of course, witchcraft will not summon demons and make people fly. Now let me get on with talking about it.”
The Weinberg position, on the other hand, seems to be along the lines of “By all means study witchcraft as history, if you like, but as far as science is concerned we should make it absolutely clear that it was just superstitious nonsense that got in the way of true progress.” To which, of course, the historian might want to say “But Robert Boyle believed that demons exist and could be summoned!” The Weinbergian (I don’t want to put words into his own mouth) might respond, “Well Boyle wasn’t perfect and he believed some pretty daft things – like alchemical transmutation.”
And at that point I say “You really don’t give a toss what Robert Boyle thought, do you? You just want to mark his homework.” But I do give a toss, and not just because Boyle was an interesting thinker, or because I don’t have any illusion that we are smarter today than people were in the seventeenth century. I want to take seriously what Boyle thought and why, because it is a part of how ideas have developed, and because I don’t believe the history of science was a process of gradually shaking off delusions and misapprehensions and refining our rationality. It is much messier than that, now and always. If your starting position in assessing Boyle’s belief in demons and alchemy is that he was sometimes a bit gullible and deluded, then you are simply not going to get much of a grasp of what or how he thought. (Boyle was somewhat gullible when it came to alchemical charlatans, but his belief in transmutation wasn’t a part of that credulity.)
My own position is more along the lines of “It’s interesting that people once believed in witchcraft. I wonder what sustained that belief, and how it interacted with emerging ideas about science?” I am not being disingenuous if I say that I am inevitably a naïve reader of Shapin, Schaffer, Daston, Fara, and indeed David Wootton. But I find this same spirit in all of their books, and that’s what I appreciate in them.
Comments from David Wootton
A number of the reviews of The Invention of Science have expressed puzzlement that my book opens and closes with extensive historiographical, methodological, and philosophical discussions. Why not just leave all that stuff out? The charge is that I am refighting the Science Wars of the 1990s when everyone else has moved on. I under- stand why people would think this, but, with respect, I think they are wrong. Let’s break down the issues as follows:
1) Are relativists still confident that they speak for the history of science profession? Yes they are. See for example Steven Shapin’s breathtaking review of Steven Weinberg in the Wall Street Journal, where Shapin actually presents belief in science as being strictly comparable to belief in Christianity (http://goo.gl/qULelt) [1]. Or see Shapin’s and Schaffer’s introduction to the anniversary edition of Leviathan and the Air Pump (2011). Or see Peter Dear’s “Historiography of Not-So-Recent Science”, History of Science 50 (2012), 197-211 (“we are all post- modernists now”).
2) Are students still taught from relativist textbooks? Yes they are. The key text- books are Shapin’s Scientific Revolution (1996; now translated into seventeen languages); Peter Dear’s Revolutionizing the Sciences (2001, revised in 2009); John Henry’s The Scientific Revolution (1997, with later revisions). This may change – there is Principe’s Very Short Introduction (2011), for example – but it hasn’t changed yet.
3) Has the profession moved on? Rather than moving on, it has decided to pretend the Science Wars never happened, and as a consequence it is stuck in a rut, incapable of generating a new account of what was happening in science in the early modern period. To quote Lorraine Daston’s 2009 essay on the present state of the discipline (http://goo.gl/rMEAiy), what historians have produced is “a swarm of microhistories ... archivally based and narrated in exquisite detail.” These microhistories, as she herself acknowledges, do not enable one to put together a bigger picture. The resulting confusion is embodied, for example, in David Knight’s Voyaging in Strange Seas: the Great Revolution in Science (Yale, 2014).
4) Are the relativists more moderate than I maintain? Philip Ball thinks I and the authors of Leviathan and the Air Pump have more in common than I imagine. I doubt Shapin and Schaffer will think so, and I suggest Philip rereads p. 342 of that book, which maintains that the success of experimental science depended on its proponents’ “political success ... in insinuating themselves into the activities of other institutions and other interest groups. He who has the most, and the most powerful, allies wins.” In this sort of story the evidence counts for nothing – indeed, the strong programme insists that the evidence must count for nothing (and note the introduction of the strong programme’s key principle of symmetry on p. 5)[2].
5) Can you separate methodology and historiography from substantive history? It’s very difficult to do so, because your methodology and the previous history of your discipline shape the questions you ask and the answers you give. Thus relat- ivist historiography has privileged controversy studies (http://goo.gl/uVfxFF), and simply ignored cases where new scientific claims have been accepted without dispute. Indeed if the Duhem-Quine thesis were right there are always grounds for dispute when new evidence is presented. I don’t see how one can discuss the collapse of Ptolemaic astronomy in the years immediately after 1610 without acknowledging that this is an event which has been invisible to previous historians because they have been unwilling to acknowledge that an empirical fact (the phases of Venus) could be decisive in determining the fate of a well- established theory — in a case like this it is not the evidence that is new, but the questions that are being asked of it, and these are inseparable from issues of methodology and historiography [3].
6) The Economist thinks I have a disagreement with a few “callow” relativists. Odd that these insignificant people hold chairs in Harvard, Cambridge, Oxford, Edinburgh, Cornell. But there is a much bigger point here: a fundamental claim made by my opponents is that historians are committed, in principle, to treating bad and good knowledge identically. The historical profession tends to agree with them (see for example Gordon Wood’s NYRB essay on medicine in the American Revolution, http://goo.gl/ZoFuMu: “The problem is most historians are relativists”).
The consequences are apparent in the Cambridge History of Science, vol. 3, ed. Park and Daston (2006), which contains a twenty page chapter on “Coffee Houses and Print Shops” (as part of a two hundred page section on “Personae- and Sites of Natural Knowledge”) and others equally long on “Astrology” and “Magic” (Astrology gets twenty pages while Astronomy gets thirty), but, despite being 850 pages long, contains no extended discussion of Digges, Stevin, Gilbert, or Pascal, nothing on magnets, and only two pages on vacuum experiments [4].
It is also apparent in Oxford University’s recent (April 2015) advertisement for its Chair in the History of Science which stated: “The professor will share the faculty’s vision of the scope of the history of science, which is less focused on the history of scientific truth and more interested in reconstructing the practices of science, and the claims to science-based authority within given societies at given times” [5]. The Oxford Faculty of History does not declare its vision of the scope of the discipline when advertising its chair in, say, military history. But the history of science is different. The faculty, as a group of professional historians, feels it must ward off anyone interested in studying science as a project that succeeds and makes progress, and at the same time encourage anyone who wants to study science as a purely social enterprise. What interests them is not scientific knowledge but the authority claimed by “scientists” — be they alchemists or phrenologists. What’s at stake here is not just the history of science, but also the claim, made over and over again by historians, that the past must be studied solely in its own terms — an approach which may lead to understanding, but cannot lead to explanation. So historians of witchcraft report encounters with devils as if the devils were real — and never ask what’s really going on.
7) What is science? I was dismayed to discover that students in my own university were being taught (by someone with a new PhD in history of science from a prestigious institution) that there was no such thing as science in the seventeenth century. But this, after all, is what Henry’s textbook says, and Dear in his 2012 review essay confidently asserts: “specialist historians seem increasingly agreed that science as we now know it is an endeavour born of the nineteenth century.” On her university website one distinguished historian of science is described thus: “Paula Findlen teaches history of science before it was ‘science’ (which is, after all, a nineteenth-century word).” (http://web.stanford.edu/ dept/HPS/findlen.html, accessed 7 Dec 2015). How have we got to the point where it appears to make sense to claim that “science” is a nineteenth-century word? Because Newton, we are told, was not a scientist (which indeed is a nineteenth-century word) but a philosopher. Even if one charitably rephrases Findlen’s statement (or the statement made on her behalf) to read “‘science’ as we currently use the term is a nineteenth-century concept” it would be wrong unless, by a circular argument, one insists that earlier usages of the word can’t possibly have meant by science what we mean by science. The whole point of my book is to show that by the end of the seventeenth century “science” (as Dryden called it) really was science as we understand the term. To unpick the miscon- ception that there was no science in the seventeenth century you have to look at the history of words like “science” and “scientist” (noting, for example, the founding of the French Académie des Sciences in 1666), but also at an historiographical tradition which has insisted that what we think of as science is just a temporary and arbitrary social practice, like metaphysical poetry or Methodism, not an enduring and self-sustaining body of reliable knowledge.
8) What would have happened if I had left out the methodological and historiographical debates? I tried the alternative approach, of writing in layperson’s terms for commonsensical people, first. Just look at how my book Bad Medicine was treated by Steven Shapin, in the pages of the London Review of Books: http:/ /goo.gl/aA67fr! The book was a success in that lots of people read it and liked it, many of them doctors (see www.badmedicine.co.uk); but historians of medicine brushed it off. So this time I have felt obliged to address the core arguments which supposedly justify ignoring progress — the arguments that have bamboozled the profession for the last fifty years — in the hope of being taken a little more seriously, not by sensible people (who can’t understand why I don’t just cut to the chase), but by the professionals who think that the history of science is like cardiac surgery — not something “the laity” (Shapin’s peculiar term) can possible participate in, understand, or criticise, but something for the professionals alone. In trying to address this new clerisy I have evidently tried the patience of some of my more sensible, level-headed readers. That’s unfortunate and a matter of considerable regret: but if the way in which history of science is taught in the universities is to change, someone must take on the experts on their own ground, and someone must question the notion that the history of science ought not to concern itself with (amongst much else) the history of scientific truth. By all means skip the beginning and concluding chapters if you have no interest in how the history of science (and history more generally) is taught; but please read them carefully if you do.
Notes
[1] There is a paywall: to surmount it google “Why Scientists Shouldn’t Write History” and click on the first link. For a discussion see http://goo.gl/VYNVhX. I am grateful to Philip Ball for acknowledging that my book is very different in character from Weinberg’s, which saves me from having to stress the point.
[2] Patricia Fara thinks that social constructivism is “the idea that what people believe to be true is affected by their cultural context.” If that were the case then we would all be social constructivists and I really would be arguing with a straw person. But of course it isn’t, as I show over and over again in my book. It is, rather, the claim (made by her Cambridge colleague Andrew Cunningham) that science is “a human activity, wholly a human activity, and nothing but a human activity” — in other words that it is socially constituted, not merely socially influenced (the model for such an argument being, of course, Durkheim on religion). The consequence of this, constructivists rightly hold, is epistemological egalitarianism — any particular belief is to be regarded as being just as good as any other.
[3] Take for example William Donahue’s discussion of Galileo and the phases of Venus in Park and Daston, 585: “He argued... that this phenomenon was inconsistent with the Ptolemaic arrangement of the planets...” Galileo and his contemporaries understood perfectly well that Galileo had proved the Ptolemaic arrangements of the planets could not be right — the whole impact of Galileo’s discovery is lost by reducing it to a mere argument. Indeed Donahue does not acknowledge that it had any impact while I show the impact is measurable by counting editions of Sacrobosco.
[4] A colleague of mine unkindly calls this the Polo history: Polo Mints, to quote Wikipedia, “are a brand of mints whose defining feature is the hole in the middle.”
[5] The text is no longer on the Oxford University website, but can still be found, for example, at http://goo.gl/KOY05f (accessed 7 Dec 2015).
Subscribe to:
Posts (Atom)